[1] Allgower, E.L. and Chien, C.S., Continuation And Local Perturbation For Multiple Bifurcation, SIAM J. SCI. STAT. Comput, 7, pp.1265-1281, 1986.
[2] Atkinson, K.E., The Numerical Solution of Bifurcation Problems,SIAMJ. Numer. Anal.,14(4), pp. 584-599, 1997.
[3] Aselone, P.M. and Moore, R.H., An Extension of the Newton-Kantorovich Method for Sloving Nonlinear Equations with an Application to Elasticity. J. Math. Anal. l3, pp.476-501, 1966.
[4] Bauer, L., Reiss, E.L., and Keller, H.B., Axisymmetric Bucking of Hollow Spheres and Hemispheres, Comm. Pure Appl. Math., 23, 1970.
[5] Brezzi, F., Rappaz, J.and Raviart, P.A., Finite Dimensional Approximation of a Bifurcation Problems, Numer. Math., 36, 1-25, 1980.
[6] Crandall, M.G. and Rabinowitz, P.H., Bifurcation From Simple Eigenvalue, J. Funct. Anal., 8, pp.321-340, 1971.
[7] Crandall, M.G. and Rabinowliz, P.H., Mathematical Theory of Bifurcation, Bifurcation Phenomena in Mathematical Physics and Related Topics, edit by Bardos, C. and Bessis, D., NATO Advanced Study Institute Series, 1979.
[8] Crandall, M.G., An Introduction to Constructive Aspects of Bifurcation and The Implicit Function Theorem, Application of Bifurcation Theorem, edited by P.H. Rabinowtiz, Academic Press, New York, 1977.
[9] Decker, D.W. and Keller, H.B., Solution branching—Aconstructive Technique, In New Approaches to Nonlinear Problems in Dynamics (P.J. Holmes, Ed.) SIAM Publ., Philadelphia, 1980.
[10] Iooss, G. and Joseph, D.D., Elementary Stability and Bifurcation Theory, Springer Verlag, New York, 1980.
[11] Jepson, A.D. and Spence A., Numerical Methods for Bifurcation Problems, State of the Art in Numeriacl Analysis, edit bu A, lserles, MJD Powell, 1987.
[12] Jen,K.C.(簡國清), The Stability and Convergence of a Crank- Nicolson Scheme for a Nonlinear Beam Vibration Equation, Chinese Journal of Mathematics, Vol.23, No.2, 1995.
[13] Keller, H.B. and Langford, W.F., Iterations, Perturbations and Multiplicities for Nonlinear Bifurcation Problems, Arch. Rational Mech. Anal., 48, 1972.
[14] Keller, H.B., Numerical Solution of Bifurcation and Nonlinear Eigenvalue Problems, Applications of Bifurcation Theory, Edited by Rabinowitz, P.H., Academic Press, 1977.
[15] Keller, H.B., Lectures on Numerical Methods in Bifurcation Problems, TATA Institute of Fundamental Research, Springer-Verlag, 1987.
[16] , M. and Marek, M., Computational Merhods in Bifurcation Theory and Dissipative Structures, Springer-Verlag, New York, 1983.
[17] , M. and Marek, M., Evaluation of Limit and Bifurcation Points for Algebraic and Nonlinear Boundary Value Problems, Appl. Math. Comput, 1979.
[18] , M. and Hlavacek, V., General Parameter Mapping Technique - A Procedure for Solution of Nonlinear Boundary Value Problems Depending on an Actual Parameter , J. Inst. Math. App. 12 , 1973.
[19] Kupper, T., Mittelmann, H.D. and Weber, H. (eds.), Numerical Methods for Bifurcation Problems, Birkhauser, Basel, 1984.
[20] Rheinboldt, W.C., Solution Fields of Nonlinear Equations and Continuation Methods, SIAM J. Numer. Anal., 17, pp.221-237, 1980.
[21] Rheinboldt, W.C. and Burkardt, J.V., Aprogram for A Locally-Parameterized Continuation Process, Technical Report ICMA-81-30, Inst. For Comput. Math. and Appl. Univ. of Pittsburgh, 1981.
[22] Roose, D., Numerical Computation of Origins for Hopf Bifurcation in a Two-Parameter Problem.Internat. Schriftenreihe Numer. Math., 79, Birkhäuser, Basel, 1987.
[23] Stakgold, I., Branching of Solutions of Nonlinear Equations, SIAM Rev, 1971.
[24] Wacker, H.(ed-), Continuation Methods, Academic Press, New York, 1978.
[25] 林慧芬,非線性邊界值問題分歧點計算及其解路徑延拓,新竹教育大學碩士論文, 2005.