中文部份:
1.吳昇洋(2004),「應用資料採礦技術評估客扶中心顧客管理之績效」。國立清華大學工業工程與工程館理學系碩士論文。2.林心湄、傅旋(2001),「新事物採用因素研究—以台北市有線電視寬頻上網潛在採用者為例」,中華傳播學會2001 年學術研討會論文。
3.林呈達(2002),「寬頻網路使用與滿足研究--比較ADSL與Cable Modem之異同」,國立交通大學傳播研究所碩士論文。4.邱志洲、李天行、周宇超、呂奇傑(2002),「整合鑑別分析與類神經網路在資料探勘上之應用」, 工業工程學刊,第19期,第2卷,頁9-22。5.張欣玲(1999),「臺灣有線電視產業垂直整合發展影響面之研究—從價值鏈觀點分析」,元智大學資訊傳播研究所碩士論文。6.梁定澎(2001),「有線視訊寬頻網路服務需求與經營策略之研究」,台灣有線視訊寬頻網路發展協進會委託研究。
7.陳世運1(2001),「南韓寬頻使用率全球第一」,網際網路資訊情報。
8.陳世運2(2001),「數位時代迎接寬頻網路生活」,資策會電子商務研究所。
9.彭德昭(2003),「有線電視垂直整合之影響台灣有線電視產業之實證」。逢甲大學經濟學系碩士班碩士論文。
10.黃仁宏(2001),「台灣有線電視寬頻網路整合行銷之研究」。政治大學廣播電視研究所碩士論文。11.趙怡、陳駿德(1999),「寬頻網路服務的發展趨勢和競爭分析」,傳播管理新思潮研討會。
12.劉幼琍、陳清河(2001),「台灣Cable Modem寬頻網路使用行為之研究」,第四屆廣電學術與實務研討會論文。
13.簡陳中(1999),「我國有線電視與電信產業跨業經營之前景研究」,銘傳大學傳播管理研究所碩士論文。14.EC研究報告(2002),顧客關係管理與資料採礦,台灣國際電子商務中心。
英文部份:
1.Adriaans, P. & Zantinge, D. (1996), “Data mining”, Reading Mass.: Addison- Wesley.
2.Baesens, B., Viaene, S., Poel, D. V, Vanthienen, J. & Dedeme, G. (2002), “Bayesianneural network learning for repeat purchase modeling in direct marketing,” European Journal of Operational Research, 138(1), pp. 191-211.
3.Berry, M.J.A. & Linoff G. (1997), “Data Mining Techniques: For Marketing Sale and Customer Support,” Canada: John Wiley & Sons Inc.
4.Berson, A., Smith, S. & Thearling, K. (2000), Building data mining applications for CRM, McGraw-Hill.
5.Coenen, F., Swinnen, G., Vanhoof, K. & Wets, G. (2000), “The improvement ofresponse modeling: combining rule induction and case-based reasoning”, Expert Systems with Application, 18(4). 307-313.
6.Fayyad, U., Piatetsky-Shapiro, G., & Smyth, P. (1996), “The KDD process for extracting useful knowledge from volumes of data,” Communications of the ACM, 39(11), 27-34.
7.Frawley, W. J., Paitetsky-Shapiro, G. & Matheus, C. J. (1991), “Knowledge Discovery in Databases: An Overview, Knowledge Discovery in Databases,” California, AAAI/MIT Press, pp.1-30.
8.Greenfeld, N. (1996), “Data mining,” Unix Review, Vol. 14 No.5, pp.9-14.
9.Han, J. & Kamber, M. (2000), Data Mining: Concepts and Techniques, Morgan Kaufmann.
10.Hand, D. J., Mannila, H. & Smyth, P. (2000), Principles of Data Mining, MIT Press, Fall.
11.Hastie, T., Friedman, J. & Tibshirani, R. (2001), The element of statistical learning, New York: Springer.
12.Kalakota, R. & Robinson, M. (1999), e-Business: Roadmap for Success, Boston: MA, Addison-Wesley.
13.Levin, N., Zahavi, J & Olitsky, M. (1995), ”AMOS - A probability driven,customer oriented decision support system for target marketing of solo mailing”, European Journal of Operational Research, 87(3), pp.708-721.
14.Peacock, P. R. (1998), “Data mining in marketing: Part I,” Marketing Management, 6(4), pp. 8-18.
15.Quinlan, J. R. (1993), C4.5: Programs for Machine Learning, Morgan Kaufmann, San Mateo, CA, USA.
16.SPSS Inc. (1998), AnswerTree 2.0 User’s Guide, American: Chicago.
17.Suh, E. H., Noh, K. C. & Suh, C. K. (1999), “Customer list segmentation using thecombined response model,” Expert Systems with Applications, 17(2), pp.89-97.
18.Sung, N. H. & Lee, J. K. (2000), “Knowledge assisted dynamic pricing, forlarge scale retailers,” Decision Support Systems, 28(4), pp.347-363.
19.Verhoef, P. C., Spring, P. N., Hoekstra, J. C. & Leeflang, P. S. H. (2003), “Thecommercial use of segmentation and predictive modeling technique for databasemarketing in the Netherlands,” Decision Support Systems, 34(4), pp. 471-481.
20.Webster, F. (1992), “The changing role of marketing,” Corporation Journal of Marketing, 56, pp.1-17.
21.Wei, C. P. & Chiu, I. T. (2002), “Turning telecommunication call details to churnprediction: a data mining approach,” Expert Systems with Applications, 23(2), pp.103-112.
22.Zahavi, J. & Levin, N. (1995), “Issues and problems in applying neural computing totarget marketing,” Journal of Direct Marketing, 9(3), pp. 33-45.