跳到主要內容

臺灣博碩士論文加值系統

(98.84.18.52) 您好!臺灣時間:2024/10/14 03:41
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:陳學群
研究生(外文):Hsueh-Chun Chen
論文名稱:應用獨立成份分析、支援向量迴歸及類神經網路於財務時間序列預測模式之建構
論文名稱(外文):Using independent component analysis, support vector regression and artificial neural network for financial time series forecasting
指導教授:李天行李天行引用關係呂奇傑呂奇傑引用關係
指導教授(外文):Tian-Shyug LeeChi-Jie Lu
學位類別:碩士
校院名稱:輔仁大學
系所名稱:應用統計學研究所
學門:數學及統計學門
學類:統計學類
論文種類:學術論文
論文出版年:2006
畢業學年度:94
語文別:中文
論文頁數:127
中文關鍵詞:財務時間序列預測獨立成份分析支援向量迴歸類神經網路股價指數
外文關鍵詞:Financial time series forecastingIndependent component analysisSupport vector regressionArtificial neural networkStock index
相關次數:
  • 被引用被引用:14
  • 點閱點閱:452
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:4
財務時間序列預測一直是財務決策之重要議題,但由於財務時間序列資料具有高頻率、雜訊、非定態與混沌等性質,使得其在時間序列預測領域中,向來被認為是一極具挑戰性的應用領域。支援向量迴歸(Support vector regression, SVR)是一個以統計學習理論(Statistical learning theory)為基礎的預測方法,由於具有全域最佳解(Global optimum)及考慮結構風險(Structural risk)的特性,SVR已成功的應用於時間序列預測的議題;除此之外,類神經網路(Artificial neural network, ANN)由於擁有非線性與學習動態系統的特性,可以自動找出資料中所隱含的模式或特徵,使得ANN在建構變數間為非線性資料型態的預測問題中也有優越的表現。在使用SVR與ANN建立預測模式時,資料中的雜訊會影響建構預測模式的準確率,由於財務時間序列資料最重要的特徵就是包含許多的雜訊,因此如何偵測及去除資料中的雜訊,降低其對SVR與ANN預測模式之影響,就成為重要的研究議題。
獨立成份分析(Independent components analysis, ICA)是一個新穎的訊號處理技術,其主要目的是在沒有任何有關訊號混合的事前資訊下,從觀察到的混合訊號(Mixing signals)中找出原始的來源訊號(Source signals)。由於時間序列的雜訊往往無法由觀察到的混合訊號中獲得相關的資訊,因此本研究先利用ICA具有將混合訊號分離出個別獨立來源訊號之能力,從預測變數中估計出獨立成份,並去除代表雜訊的獨立成份及保留主要的獨立成份作為預測變數後,再使用SVR與ANN以濾除雜訊後之預測變數建構預測模式,整體而言,本研究提出兩種預測模式,一為結合ICA與SVR之預測模型,另一則為結合ICA與ANN之預測模型;期望可以讓SVR與ANN在建構模式時不受雜訊影響,進而提升預測結果的準確度。
為驗證所提方法之有效性,本研究將以日經225(Nikkei 225)現貨開盤價格及台灣加權股價指數(Taiwan stock exchange capitalization weighted stock index)收盤價格進行實證研究,並與單純使用預測工具模式、隨機漫步(Random walk)模式及其他常用的去除雜訊方法-簡單移動平均(Simple moving average)及小波框架(Wavelet frame)之預測結果作比較。實證結果顯示,整體而言,所提之方法不論在預測誤差或是趨勢預測準確度的表現上均較單純使用預測工具、隨機漫步、簡單移動平均及小波框架為佳。
As financial time series are inherently noisy, non-stationary and deterministically chaotic, it is one of the most challenging applications of modern time series forecasting. Due to the advantages of building nonparametric and nonlinear models, support vector regression (SVR) and artificial neural network (ANN) have been successfully applied in time series prediction, especially in the financial time series forecasting. In the modelling of financial time series using SVR and ANN, one of the key problems is the inherent high noise. Therefore, detecting and removing the noise are important but difficult tasks when building an SVR and ANN forecasting models. In this research, two forecasting models using independent component analysis (ICA), SVR and ANN are proposed for financial time series forecasting. ICA is a novel statistical signal processing technique that was originally proposed to find the latent source signals from observed mixture signal without knowing any prior knowledge of the mixing mechanism. The proposed approaches firstly use ICA to the forecasting variables for generating the independent components (ICs). After identifying and removing the ICs containing noise, the rest of the ICs are then used to reconstruct the forecasting variables which contain less noise. The SVR and Back-propagation neural network (BPN) are then respectively applied to use the filtered (or denoised) forecasting variables to build the forecasting models. In order to evaluate the performance of the proposed approaches, the Nikkei 225 opening cash price index and TAIEX are used as the illustrative examples. The experimental results show that the proposed models outperforms the SVR and BPN model with non-filtered forecasting variables, random walk model, simple moving average model and wavelet frame model in forecasting performance.
中文摘要…………………………………………………………………….. Ⅰ
英文摘要…………………………………………………………………….. Ⅲ
誌謝………………………………………………………………………….. Ⅴ
目錄………………………………………………………………………….. Ⅵ
圖次………………………………………………………………………….. Ⅸ
表次………………………………………………………………………….. ⅩⅠ

第一章 緒論………………………………………………………………... 1
第一節 研究背景…………………………………………………………... 1
第二節 研究目的…………………………………………………………... 3
第三節 研究架構…………………………………………………………... 4
第二章 文獻探討…………………………………………………………... 5
第一節 財務時間序列預測………………………………………………... 5
第二節 類神經網路………………………………………………………... 7
第三節 支援向量迴歸……………………………………………………... 10
第四節 獨立成份分析……………………………………………………... 13
第三章 研究方法…………………………………………………………... 17
第一節 倒傳遞類神經網路………………………………………………... 17
3.1.1 類神經網路之架構………………………………………………... 17
3.1.2 倒傳遞類神經網路之架構………………………………………... 18
3.1.3 倒傳遞類神經網路之學習演算法………………………………... 21
第二節 支援向量迴歸……………………………………………………... 23
3.2.1 支援向量迴歸之架構……………………………………………... 23
3.2.2 支援向量迴歸之最適化問題……………………………………... 25
第三節 獨立成份分析……………………………………………………... 30
3.3.1 獨立成份分析之模型……………………………………………... 31
3.3.2 非高斯特性即為獨立性…………………………………………... 34
3.3.3 獨立性量測………………………………………………………... 35
第四節 結合ICA與SVR及BPN之方法……………………………………... 39
3.4.1 測試接受法(TnA)………………………………………………... 41
3.4.2 獨立成份選擇……………………………………………………... 44
第四章 實證結果分析……………………………………………………... 47
第一節 實證資料…………………………………………………………... 47
4.1.1 日經225開盤資料………………………………………………... 47
4.1.2 台灣加權股價指數收盤資料……………………………………... 50
第二節 評估準則..………………………………………………………... 53
第三節 結合ICA與BPN之預測結果………………………………………... 54
4.3.1 日經225開盤資料…………………………………………………... 54
4.3.2 台灣加權股價指數收盤資料……………………………………... 59
第四節 結合ICA與SVR模式之預測結果…………………………………... 68
4.4.1日經225開盤資料…………………………………………………... 68
4.4.2台灣加權股價指數收盤資料………………………………………... 69
第五節 ICA與其他去除雜訊方法的比較………………………………... 71
第六節 選擇不同個數之獨立成份代表雜訊之影響……………………... 74
第五章 結論與建議………………………………………………………... 76
第一節 結論………………………………………………………………... 76
第二節 研究貢獻…………………………………………………………... 77
第三節 後續研究建議……………………………………………………... 78
參考文獻……………………………………………………………………... 80
附錄A:FastICA演算法…………………………………………………... 96
附錄B:各預測模型在不同參數組合下的訓練及測試結果……………... 101
B.1 日經225開盤資料-BPN……………………………………………... 101
B.2 台灣加權股票指數收盤資料-BPN…………………………………... 103
B.3 日經225開盤資料-SVR……………………………………………... 106
B.4 台灣加權股票指數收盤資料-SVR…………………………………... 108
附錄C:結合其他去雜訊方法之SVR預測模型在不同參數組合
下的訓練及測試結果……………………………………………...110
C.1 日經225開盤資料……………………………………………………... 110
C.2台灣加權股票指數收盤資料…………………………………………... 112
附錄D:不同獨立成份還原之預測模型在不同參數組合
下的訓練及測試結果……………………………………………... 115
附錄E:結合其他去雜訊方法之BPN預測模型在不同參數組合
下的訓練及測試結果……………………………………………... 117
E.1 日經225開盤資料……………………………………………………... 117
E.2 台灣加權股票指數收盤資料………………………………………... 120
附錄F:交易策略…………………………………………………………... 123
F.1 日經225開盤資料……………………………………………………... 123
F.2台灣加權股票指數收盤資料…………………………………………... 125
王彥茸,2000,「台灣實施隔週休二日制度對股市報酬率之影響」,中央大學企業管理研究所碩士論文。
呂國宏,2001,「運用演化式類神經網路預測台灣股市行為之研究」,政治大學資訊管理學系碩士論文。
宋裕民,2002,「模糊類神經網路理論於信用之識別」,交通大學電資學院學程碩士論文。
周慶華,2001,「整合基因演算法及類神經網路於現貨開盤指數之預測-以新加坡交易所摩根台股指數期貨為例」,輔仁大學金融研究所碩士論文。
林建成,2002,「遺傳演化類神經網路於台灣股市預測與交易策略之研究」,東吳大學經濟學系碩士論文。
林志昇,2003,「修改支援向量機模型於預測系統之應用」,大葉大學工業工程學系碩士論文。
林品杰,2004,「應用獨立成份分析濾波器於背光板與TFT-LCD面版之瑕疵檢測」,元智大學工業工程與管理學系碩士論文。
林其鴻,2005,「資料探勘於財務時間序列預測模式之建構-以日經225期貨與現貨指數為例」,輔仁大學金融研究所碩士論文。
吳智鴻,2004,「結合基因演算法最佳化「支持向量機」參數~財務危機上之應用」,台北大學企業管理研究所碩士論文。
洪至懿,2003,「特徵擷取與分類應用與想像左右手手指運動之腦波辨識」,陽明大學放射醫學科學研究所碩士論文。
莊智有,2000,「台灣股市元月效應成因之探討-綜合實證研究」,中原大學企業管理學系碩士論文。
徐美珍,2004,「企業財務危機之預測」,政治大學統計研究所碩士論文。
陳國玄,2004,「人工神經網路與統計方法應用於台灣上市電子類股價指數預測與分類之研究」,成功大學統計研究所碩士論文。
陳柏誠,2004,「新穎獨立成份分析應用於隱藏式馬可夫模型分群及未知訊號分離」,成功大學資訊工程研究所碩士論文。
陳峙儒,2004,「S&P500 股價指數期貨與現貨間價格預測效果的探討─根據時間序列與人工智慧模型」,成功大學財務金融研究所碩士論文。
陳姿先,2004,「美國國庫券與歐洲美元利率期貨價格間預測關係之探討─根據時間序列與人工智慧模型」,成功大學財務金融研究所碩士論文。
黃彥聖,1995,「移動平均法的投資績效」,管理評論,第40卷,第一期,頁47-68。
游淑禎,1998,「類神經網路應用於台灣股市預測:統合基本面與技術面資訊」,證券市場發展季刊,第十卷,第三期,頁97-134。
張振魁,2000,「以類神經網路提高股票單日交易策略之獲利」,中央大學資訊管理研究所碩士論文。
楊政麟,1998,「運用類神經網路於股價指數套利之研究」,台灣科技大學管理技術研究所碩士論文。
楊雅淇,2000,「台灣金融類股價指數預測模式之實証比較研究」,淡江大學統計研究所碩士論文。
蔡金豐,2001,「類神經網路於台灣股市預測之應用」,高雄第一科技大學電腦與通訊系碩士論文。
劉國慶,2003,「利用磁振造影的血流灌注影像分割技術來評估腦部疾病」,陽明大學放射醫學科學研究所碩士論文。
Aizerman, M. A., E. M. Braverman, and L. I. Rozonoer, 1964, “Theoretical foundations of the potential function method in pattern recognition learning, ” Automation and Remote Control, Vol. 25, pp. 1175-1193.
Angelos, K. and Y. Andreas, 2001, “Comparing linear and nonlinear forecasts for stock returns,” International Review of Economics and Finance, Vol. 10, pp. 383-398.
Andrisevic, N., K. Ejaz, F. Rios-Gutierrez, R. Alba-Flores, G. Nordehn and S. Burns, 2005, “Detection of heart murmurs using wavelet analysis and artificial neural network,” Journal of Biomechanical Engineering-Transaction of the ASME, Vol. 27, pp. 899-904.
Apergis, N., 2004, “Inflation, output growth, volatility and causality: evidence from panel data and the G7 countries,” Economics Letters, Vol. 83, pp. 185-191.
Back, A. and A. Weigend, 1997, ”Discovering structure in finance using independent component analysis,” Proceeding of 5th International Conference on Neural Networks in Capital Market, pp. 15-17.
Balachandher, K. G., M. N. Fauzias and M. M. Lai, 2002, “An examination of the random walk model and technique trading rules in the Malaysian stock market,” Quarterly Journal of Business & Economics, Vol. 41, pp. 81-104.
Bartlett, M. S., J. R. Movellan and T. J. Sejnowski, 2002, “Face recognition by independent component analysis,” IEEE Transactions on Pattern Analysis and Machine Intelligence, Vol. 13, pp. 1450-1464.
Belouchrani, A., K. Abedmeraim, J. F. Cardoso and E. Moulines, 1997, “A blind source separation technique using second order statistics,” IEEE Transactions on Signal Processing, Vol. 45, pp. 434-444.
Brock, W. A. and A. W. Kleidon, 1992, “Periodic market closure and trading volume: a model of intraday bids and asks,” Journal of Economic Dynamics and Control, Vol. 16, pp. 451-489.
Burbidge, R., M. Trotter, B. Buxton and S. Holden, 2001, “Drug design by machines learning: support vector machines for pharmaceutical data analysis,” Computer & Chemistry, Vol. 26, pp. 5-14.
Cao, X. R. and R. W Liu, 1996, “General approach to blind source separation,” IEEE Transactions on Signal Processing, Vol. 44. pp. 562-571.
Cao, L. and F. E. H. Tay, 2001, “Financial forecasting using support vector machines,” Neural Computing and Applications, Vol. 10, pp. 184-192.
Cao, L. and Q. Gu, 2002, “Dynamic support vector machines for non-stationary time series forecasting,” Intelligent Data Analysis, Vol. 6, pp. 67-83.
Cao, L., 2003, “Support vector machines experts for time series forecasting,” Neurocomputing, Vol. 51, pp. 321-339.
Cao, Q., K. B. Leggio and M. J. Schniederjans, 2005, “A comparison between Fama and French’s model and artificial neural networks in predicting the Chinese stock market,” Computers & Operations Research, Vol. 32, pp. 2499-2512.
Caudill, M. and C. Butler, 1992, “Understanding neural networks: computer exploration,” Vol. 2, MIT press, Cambridge, MA.
Chang, C. C. and C. J. Lin, 2001, LIBSVM: a library for support vector machines, online available at http://www.csie.ntu.
edu.tw/~cjlin/libsvm/
Chen, J., A. Bandoni and J. A. Romagnoli, 1998, “Outlier detection in process plant data,” Computers & Chemical Engineering, Vol. 22, pp. 641-646.
Chen, J. and J. A. Romagnoli, 1998, “Strategy for simultaneous dynamic data reconciliation and outliers detection,” Computers & Chemical Engineering, Vol. 22, pp. 559-562.
Chen, A. S., M. T. Leung and H. Daouk, 2003, “Application of neural networks to an emerging financial market: forecasting and trading the Taiwan Stock Index,” Computers & Operations Research, Vol. 30, pp. 901-923.
Cherkassky, V. and F. Mulier, 1999, “Vapnik-Chervonenkis (VC) learning theory and its applications,” IEEE Transactions on Neural Networks, Vol. 10, pp. 985-987.

Cherkassky, V., and Y. Ma, 2003, “Comparison of model selection for regression,” Neural Computation, Vol. 15, pp. 1691-1714.
Cherkassky, V., and Y. Ma, 2004, “Practical selection of SVM parameters and noise estimation for SVM regression,” Neural Networks, Vol. 17, pp. 113-126.
Cheung, Y., and L. Xu, 2001, “Independent component ordering in ICA time series analysis,” Neurocomputing, Vol. 41, pp. 145-152.
Christensen, R. and L. M. Pearson, 1992, “Case-deletion diagnostics for mixed models,” Technometrics, Vol. 34. pp. 38-45.
Chuang, C. C., S. F. Su and C. C. Hsiao, 2002, “Robust support vector regression networks for function approximation with outliers,” IEEE Transactions on Neural Networks, Vol. 13, pp. 1322-1330.
Cover, J. P. and C. J. Hueng, 2003, “The correlation between shocks to output and the price level: evidence from a multivariate GARCH model,” Southern Economic Journal, Vol. 70, pp. 75-92.
Deboeck, G. J., 1994, “Trading on the edge: neural, genetic and fuzzy systems for chaotic financial markets,” Willey, New York.
Déniz, O., M. Castrillón and M. Hernández, 2003, “Face recognition using independent component analysis and support vector machines,” Pattern Recognition Letters, Vol. 24, pp. 2153-2157.
Drucker, H., C. J. C. Burges, L. Kaufman, A. Smola and V. N. Vapnik, 1997, “Support Vector Regression Machines,” Advances in Neural Information Processing Systems, Vol. 9, pp. 155.
Fama, E. F., 1970, “Efficient Capital Market: A Review of Theory and Empirical, ” Journal of Finance, Vol. 25, pp. 383-417.
Greg, T., 2001, “Neural network forecasting of Canadian GDP growth,” International Journal of Forecasting, Vol. 17, pp. 57-69.
Grudnitski, G. and L. Osburn, 1993, “Forecasting S&P and gold futures prices: an application of neural networks,” The Journal of Finance, Vol. 5, pp. 1155-1176.
Gunn, S. R. 1998, “Support vector machines for classification and regression,” Technical Report, Dept of Electronics and Computer Science, University of Southampton.
Hornik, K., M. Stinchcombe, and H. White, 1989, “Multilayer feedforward networks are universal approximation,” Neural Networks, Vol. 2, pp. 336-359.
Hsu, C. W., C. C. Lin, and C. J. Lin, 2003, “A practical guide to support classification,” retrieved Nov.21, 2004, from http://www.csie.ntu.edu.tw/~cjlin/papers/guide/guide.pdf.
Hurri, J., H. Gävert, J. Särelä , and A. Hyvärinen, 2004, FastICA Package, online available at http://www.cis.hut.fi/projects/
ica/fastica/
Hyvärinen, A., 1998, “New approximations of differential entropy for independent component analysis and projection pursuit,” Advances in Neural Information Processing System, Vol. 10, pp. 273-279.
Hyvärinen, A., P. O. Hoyer and E. Oja, 1998, “Sparse Code Shrinkage for Image Denoise,” Proceedings of International Joint Conference on Neural Networks, Anchorage, Alaska, pp. 859-864.
Hyvärinen, A., 1999, “The fixed-point algorithm and maximum likelihood estimation for independent component analysis,” Neural Processing Letters, Vol. 10, pp. 1-5.
Hyvärinen, A., 1999, “Fast and robust fixed-point algorithms for independent component analysis,” IEEE Transactions on Neural Networks, Vol. 10, pp. 626-634.
Hyvärinen, A., J. Karhunen and E. Oja, 2001, “Independent Component Analysis,” Wiley press, New York.
Hyvärinen, A., P. O. Hoyer and E. Oja, 2001, “Image denoise by sparse code shrinkage,” Proceedings of Intelligent Signal, New York , pp. 554-568.
Hyvärinen, A., 2005, “A unifying for blind separation of independent sources,” Signal Processing, Vol. 85, pp. 1419-1427.
Ikeda S. and K. Toyama, 2000, “Independent component analysis for noisy Data-MEG data analysis,” Neural Networks, Vol. 10, pp. 1063-1074.

Ilan, A., Q. Min and R. J. Sadowski, 2001, “Forecasting aggregate retail sales: a comparison of artificial neural networks and traditional methods,” Journal of Retailing and Consumer Services, Vol. 8, pp. 147-156.
Johnston, F. R., J. E. Boyland, M. Meadows, and E. Shale, 1999, “Some properties of a simple moving average when applied to forecasting a time series,” Journal of Operating Research Society, Vol. 50, pp. 1267-1271.
Jung, C. and R. Boyd, 1996, ”Forecasting UK Stock Prices,” Applied Financial Economics, Vol. 6, pp. 279-286.
Kanas, A. and A. Yannopoulos, 2001, “Comparing linear and nonlinear forecasts for stock returns,” International Review of Economics and Finance, Vol. 10, pp. 383-398.
Kao, J. J. and S. S. Huang, 2000, “Forecast using neural networks versus Box-Jenkin methodology for ambient air quality monitoring data,” Journal of the Air & Waste Management Association, Vol. 50, pp. 219-226.
Karras, D. A. and B. G. Mertzios, 2004, “Time series modeling of endocardial border motion in ultrasonic images comparing support vector machines, multilayer perceptrons and linear estimation technique,” Measurement, Vol. 36, pp. 331-345.
Kim, S. H. and S. H. Chun, 1998, “Graded forecasting using an array of bipolar prediction of probabilistic neural networks to a stock market index,” International Journal of Forecasting, Vol. 14, pp. 323-337.
Kim, K. I., K. Jung, S. H. Park, H. J. Kim, 2002, “Support vector machines for texture classification,” IEEE Transactions on Pattern Analysis and Machine Intelligence, Vol. 24, pp. 1542-1550.
Kim, K. J., 2003, “Financial time series forecasting using support vector machines,” Neurocomputing, Vol. 55, pp. 307-319.
Kwok, J. T., 2001, “Linear dependency between ε input noise in ε-support vector regression,” Proceedings of the International Conference on Artificial Neural Network, Vol. 2130, pp. 405-410.
Koike, A. and T. Takagi, 2004, “Prediction of protein-protein interaction sites using support vector machines,” Protein Engineering Design & Selection, Vol. 17, pp. 165-173.
Lee, T. W., 1998, “Independent Component Analysis: Theory and Application,” Kluwer Academic Publishers, Boston, MA.
Lee, T. S. and N. J. Chen, 2002, “Investigating the information content of non-cash-trading index futures using neural networks,” Expert Systems with Applications, Vol. 22, pp. 225-234.
Lee, T. S. and C. C. Chiu, 2002, “Neural network forecasting of an opening cash price index,” International Journal of Systems Science, Vol. 33, pp. 229-237.
Lee, T. S., N. J. Chen and C. C. Chiu, 2003, “Forecasting the opening cash price index using grey forecasting and neural networks: evidence from the SGX-DT MSCI Taiwan Index Futures Contracts,” Computational Intelligence in Economics and Finance, pp. 151-170.

Leigh, W., R. Hightower and N. Modani, 2005, “Forecasting the New York stock exchange composite index with past price and interest rate on condition of volume spike,” Expert Systems with Applications, Vol. 28, pp. 1-8.
Li, T., Q. Li, S. Zhu, and M. Ogihara, 2002, “A survey on wavelet applications in data mining,” ACM SIGKDD Explorations Newsletter, Vol. 4, pp. 49-68.
Lien, D. and Y. K. Tse, 1999, “Fractional cointegration and futures hedging,” Journal of Futures Markets, Vol. 19, pp. 457-474.
Liu, Y. and X. Yao, 2001, “Evolving neural networks for Hang Seng stock index forecast,” Proceedings of the 2001 Congress, Vol. 1, pp. 256-260.
Mizuno, H., M. Kosaka, H. Yajima and N. Komoda, 1998, “Appliction of neural network to technical analysis of stock market prediction,” Studies in Informatic and Control, Vol. 7, pp. 111-120.
Mitra, S., W. Chen and Y. H. Xu, 1999, “Application of micro-GC for continue monitoring for organic emissions from a catalytic incinerator,” Journal of Microcolumn Separations, Vol. 11, pp .239-245.
Mohandes, Halawani, and Rehman, “Support vector machine for wind speed prediction,” International Journal of Renewable Energy, Vol. 29, pp. 939-947.
Muñoz, A. and J. Muruzáabl, 1998, “Self-organizing maps for outlier detection,” Neurocomputing, Vol. 18, pp. 33-60.
Norinder, U., 2003, “Support vector machine models in drug design: applications to transport processes and QSAR using simplex optimizations and variable selection,” Neurocomputing, Vol. 55, pp. 337-346.
Officer, R. R., 1975, “Seasonalities in Australian capital market: market efficiency and empirical issues ,” Journal of Financial Economics, Vol. 2, pp. 29-51.
Oja, E., K. Kiviluoto, and S. Malaroiu, 2000, ”Independent component analysis for financial time series,” Proceedings of IEEE 2000 Symposium on Adaptive Systems for Signal Processing, Communication, and Control, Canada, pp. 111-116.
Pai, P. F. and C. S. Lin, 2004, “Using support vector machines in forecasting production values of machinery industry in Taiwan,” accepted by International Journal of Advanced Manufacturing Technology.
Parker, D. B., 1985, “Learning-logic: casting the cortex of the human brain in silicon (technical report TR-47, center for computational research in economics and management science),” MIT press, Cam-bridge.
Park, H., D. S. Joo and D. J. Choi, 2000, “The effects of data preprocessing in the determination of coagulant dosing rate,” Water Research, Vol. 34, pp. 3295-3302.
Parisi, F. and A. Vasquez, 2000, “Simple technique trading rules of stock returns: evidence from 1987 to 1998 in Chile,” Emerging Market Review, Vol. 1, pp. 152-164.
Paul, K., H. Phua, 2001, “Neural network with genetically evolved algorithms for stocks prediction,” Asia-pacific Journal of Operational Research, Vol. 18, pp. 103-107.
Rumelhart, D. E., G. E. Hinton, and R. J. Williams, 1986, “Learning internal representations by error propagation,” MIT press, MA, Cambridge.
Shi, Z. W., H. W. Tang and Y. Y. Tang, 2005, “Blind source separation of more sources than mixtures using sparse mixture models,” Pattern Recognition Letters, Vol. 26, pp. 2491-2499.
Shin, K. S., T. S. Lee and H. J. Kim, 2005, “An application of support vector machines in bankruptcy prediction model,” Expert Systems with Applications, Vol. 28, pp. 127-135.
Stern, H. S., 1996, “Neural networks in applied statistics,” Technometrics, Vol. 38, pp. 205-216.
Suykens, J. A. K., J. De Brabanter, L. Lukas and J. Vandewalle, 2002, “Weighted least squares support vector machines: robustness and sparse approximation,” Neurocomputing, Vol. 48, pp. 85-105.
Tay, F. E. H., and L. Cao, 2001, “Application of support vector machines in financial time series forecasting,” Omega, Vol. 29, pp. 309-317.
Tay, F. E. H. and L. J. Cao, 2002, “Modified support vector machines in financial time series forecasting,” Neurocomputing, Vol. 48, pp. 847-861.
Thissen, U., R. van Brakel, A. P. de Weijer, W. J. Melssen and L. M. C. Buydens, 2003, “Using support vector machines for time series prediction,” Chemometrics and Intelligent Laboratory Systems, Vol. 69, pp. 35-49.
Trafalis, T. B. and H. Ince, 2000, “Support vector machine for regression and applications to financial forecasting,” Proceedings of the IEEE-INNS-ENNS International Joint Conference on Neural Networks, Italy, pp. 348-353.
Tsaih, R., 1998, “Forecasting S&P 500 stock index futures with a hybrid AI system,” Decision Support Systems, Vol. 23, pp. 161-174.
Vapnik, V. N., S. Golowich and A. J. Smola, 1997, “Support vector method for function approximation, regression estimation, and signal processing,” Advances in Neural Information Processing Systems, Vol. 9, pp. 281-287.
Vapnik, V. N., 1999, “The nature of statistical learning theory(2nd ed),”Springer, Berlin, Germany.
Vellido, V. N., P. J. G. Lisboa and J. Vaughan, 1999, “Neural Networks in Business: A Survey of Applications (1992-1998),” Expert Systems with Applications, Vol. 17, pp. 51-70.
Visser, E., T. W. Lee, 2003, “Speech enhancement using blind source separation and two-channel energy based speaker detection,” Proceedings of 2003 IEEE International Conference on Acoustics, Speech, and Signal, La Jolla, CA, pp. 884-887.
Yu, R. Q., J. H. Wang, and J. H. Jiang, 1996, “Robust back propagation algorithm as chemometric tool to prevent the overfitting to outliers,” Chemometrics and Intelligent Laboratory Systems, Vol. 34, pp. 109-115.
Werbos, P. J., 1974, “Beyond regression: new tool for prediction and analysis in the behavioral science,” Ph.D. Thesis. Harvard University, Cambridge, MA.
Widrow, B., and M. E. Jr. Hoff, 1960, “Adaptive switching circuits,” National Journal of Medical Informatics, Vol. 57, pp. 41-55.
Yagci, O., D. E. Mercan, H. K. Cigizoglu and M. S. Kabdasli, 2005, “Artificial intelligence methods in breakwater damage ratio estimation,” Ocean Engineering, Vol. 32, pp. 2088-2106.
Yang, Y. and X. Liu, 1999, “A re-examination of text categorization methods,” ACM International Conference on Research and Development in Information Retrieval, Vol. 22, pp. 42-49.
Yang, H., K. Huang, L. Chan, I. King and M. R. Lyu, 2004, “Outliers Treatment in Support Vector Regression for Financial Time Series Prediction,” International Conference on Neural Information Processing, Springer-Verlag, Berlin, Heidelberg, pp. 1260-1265.
Yaser, S., AF. Atiya, 1996, “Introduction to financial forecasting,” Applied Intelligence, Vol. 6, pp. 205-213.

Zhang, G., B. E. Patuwo and M. Y. Hu, 1998, “Forecasting with artificial neural networks the state of the art,” International Journal of Forecasting, Vol. 14, pp. 35-62.
Zhao, W., D. Chen and S. Hu, 2004, “Detection of outlier and a robust BP algorithm against outlier,” Computers and Chemical Engineering, Vol. 28, pp. 1403-1408.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top