跳到主要內容

臺灣博碩士論文加值系統

(98.84.18.52) 您好!臺灣時間:2024/10/04 01:58
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:王雪如
研究生(外文):Hsueh-Ju Wang
論文名稱:估計Gamma製程中干擾啟始時間之研究
論文名稱(外文):Estimating the Starting Time of a Disturbance for Gamma Processes
指導教授:邵曰仁邵曰仁引用關係侯家鼎侯家鼎引用關係
指導教授(外文):Yuehjen E. ShaoChia-Ding Hou
學位類別:碩士
校院名稱:輔仁大學
系所名稱:應用統計學研究所
學門:數學及統計學門
學類:統計學類
論文種類:學術論文
論文出版年:2006
畢業學年度:94
語文別:中文
論文頁數:79
中文關鍵詞:X_bar管制圖S管制圖Gamma 製程改變點最大概似估計蒙地卡羅
外文關鍵詞:X_bar chartS chartgamma processchange pointmaximum likelihood estimationMonte Carlo
相關次數:
  • 被引用被引用:2
  • 點閱點閱:310
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:2
製程人員持續地在改善製程,而改善製程的必要步驟之ㄧ,即是有效地辨識出製程產生干擾時的改變點或啟始點,若能儘早找出製程失控啟始點,便可減少因延後找出製程失控根本原因所造成人力與資源的浪費。因而,如何有效地估計出製程干擾啟始點是一個非常重要的研究課題。不同於傳統常態製程假設,本文探討當製程服從Gamma分配時,如何使用X_bar與S管制圖結合最大概似估計法,以估計Gamma製程的改變點,本文並且驗證所提出的參數估計量具有不偏與一致性的統計性質。由於應用X_bar之傳統SPC管制界限監控Gamma製程會產生假警訊,本文以理論推導出X_bar管制圖監控Gamma製程時之真實管制界限,本文並應用蒙地卡羅技術決定S管制圖之管制界限;同時,本文將藉由模擬範例展示本研究方法之優異成效。
The process personnel always seek the opportunity to improve the processes. One of the essential steps for process improvement is to quickly estimate the starting time or the change point of a process disturbance. If we can promptly recognize a disturbance in a process, we will be able to fix the root causes of the problem and significantly improve the underlying process. Consequently, how to effectively estimate the starting time of a disturbance becomes a very important research issue.
Different from the traditional normally distributed assumption for a process, this study considers a process which follows a gamma distribution. This study proposes a fruitful approach to estimate the starting time of a disturbance for gamma processes. This study demonstrates that the proposed estimators are unbiased and consistent estimators. The proposed approach combines the commonly used X_bar control chart and S control charts and the maximum likelihood (ML) technique. In addition, when we apply the typical X_bar to monitor the gamma processes, the false alarms would increase. Furthermore, this study derives the true upper and lower control limits when the X_bar control chart is used to monitor a gamma process. This study employs the Monte Carlo technique to determine the upper and lower control limits when the S control chart is used to monitor a gamma process. The fruitful results with the use of proposed approach are also demonstrated.
目 錄

摘要 I
目錄 III
圖目錄 IV
表目錄 V


第一章 緒論 1
第一節 研究背景 1
第二節 研究動機與目的 2
第三節 研究流程 4
第二章 文獻探討 6
第三章 問題論述與研究方法 10
第一節 問題闡述 10
第二節 方法論 14
第三節 參數估計式之統計性質 24
第四章 範例 34
第一節 模擬範例步驟 34
第二節 範例結果之比較 36
第五章 結論與未來研究方向 47
第一節 結論 47
第二節 未來研究方向 48
參考文獻 50
附錄A Fortran程式碼與註解 53
附錄B Gamma其餘參數組合之偏誤與均方誤 71
附錄C Gamma其餘參數組合S管制圖管制界限之蒙地卡羅估計值 77

圖目錄

圖1-1 研究流程圖 5
圖3-1 常態分配之模擬資料示意圖 11
圖3-2 Gamma分配之模擬資料示意圖 14
圖4-1 不同子群樣本下估計量之偏誤 (δ=1.1) 30
圖4-2 不同子群樣本下估計量之偏誤 (δ=1.5) 30
圖4-3 不同子群樣本下估計量之偏誤 (δ=2.0) 31
圖4-4 不同子群樣本下估計量之均方誤 (δ=1.1) 32
圖4-5 不同子群樣本下估計量之均方誤 (δ=1.5) 32
圖4-6 不同子群樣本下估計量之均方誤 (δ=2.0) 32
圖B-1 G(0.5,1)與不同δ,六種估計式偏誤與樣本數n之關係圖 71
圖B-2 G(2,1)與不同δ,六種估計式偏誤與樣本數n之關係圖 72
圖B-3 G(3,1)與不同δ,六種估計式偏誤與樣本數n之關係圖 72
圖B-4 G(4,1)與不同δ,六種估計式偏誤與樣本數n之關係圖 73
圖B-5 G(0.5,1)與不同δ,六種估計式均方誤與樣本數n之關係圖 74
圖B-6 G(2,1)與不同δ,六種估計式均方誤與樣本數n之關係圖 74
圖B-7 G(3,1)與不同δ,六種估計式均方誤與樣本數n之關係圖 75
圖B-8 G(4,1)與不同δ,六種估計式均方誤與樣本數n之關係圖 75

表目錄

表4-1 G(1,1) 之S管制圖管制界限之蒙地卡羅估計值 35
表4-2 10000次模擬實驗平均失控啟始時間與標準誤(n=2) 37
表4-3 10000次模擬實驗平均失控啟始時間與標準誤(n=3) 38
表4-4 10000次模擬實驗平均失控啟始時間與標準誤(n=4) 38
表4-5 10000次模擬實驗平均失控啟始時間與標準誤(n=5) 39
表4-6 10000次模擬實驗平均失控啟始時間與標準誤(n=10) 39
表4-7 10000次模擬實驗平均失控啟始時間與標準誤(n=15) 40
表4-8 10000次模擬實驗平均失控啟始時間與標準誤(n=20) 40
表4-9 10000次模擬實驗平均失控啟始時間與標準誤(n=25) 41
表4-10 10000次模擬實驗平均失控啟始時間與標準誤(n=30) 41
表C-1 G(0.5,1)之S管制圖管制界限之蒙地卡羅估計值 77
表C-2 G(2,1)之S管制圖管制界限之蒙地卡羅估計值 77
表C-3 G(3,1)之S管制圖管制界限之蒙地卡羅估計值 78
表C-4 G(4,1)之S管制圖管制界限之蒙地卡羅估計值 78
參考文獻
1.Borror, C.M., D.C. Montgomery, and G.C. Runger, “Robustness of the EWMA control chart to non-normality,” Journal of Quality Technology, 31(3), 1999, pp. 309-316.
2.Box, G.E.P. and T. Kramer, “Statistical process monitoring and feedback adjustment: a discussion,” Technometrics, 34, 1992, pp. 251-285.
3.Ferguson, T.S., “A course in large sample theory,” Chapman and Hall, 1996.
4.Fisher, R.A., “On the probable error of a coefficient of correlation deduced from a small sample,” Metron 1, 1921, pp. 3-32.
5.Gan, F.F., ”An optimal design of CUSUM quality control chart,” Journal of Quality Technology, 23, 1991, pp. 279-286.
6.Gonod, L.V., J. Chadoeuf, and C. Chenu, “Spatial distribution of microbial 2,4-dichlorophenoxy acetic acid mineralization from field to microhabitat scales,” Soil Science Society of America Journal, 70 (1), 2006, pp. 64-71.
7.Hawkins, D.M., “A Cusum for a scale parameter,” Journal of Quality Technology, 13, 1981, pp. 228-231.
8.Hawkins, D.M., “Cumulative sum control charting: an underutilized SPC tool,” Quality Engineering, 5, 1993, pp. 463-467.
9.Jamshidian, F. and Z. Yu, “Scenario simulation: theory and methodology,” Finance and Stochastics, Sakura Global Capital, 1(1), 1996, pp. 43-67.
10.Kruit, P. and S.W. Steenbrink, “Shot noise in electron-beam lithography and line-width measurements,” Scanning, 28(1), 2006, pp. 20-26.
11.Levinson, W., “Watch out for nonnormal distributions of impurities,” Chemical Engineering Progress, 93(5), 1997, pp. 70-76.
12.Levinson, W., “SPC for real-world processes: what to do when the normality assumption doesn't work,” Presented at the ASQ's Annual Quality Conference in Indianapolis, 2000.
13.Levinson, W. and A. Polny, “SPC for tool particle counts,” Semiconductor International, 1999, pp. 117-122.
14.MacGregor, J.M., “Discussion of statistical process monitoring and feedback adjustment-a discussion,” Technometrics, 34, 1992, pp. 273-275.
15.Montgomery, D.C., J.B. Keats, G.C. Runger, and W.S. Messina, “Integrating statistical process control and engineering process control,” Journal of Quality Technology, 26, 1994, pp. 79-87.
16.Montgomery, D.C. and C.M. Mastrangelo, “Some statistical process control for autocorrelation data,” (with Discussion), Journal of Quality Technology, 23, 1991, pp. 179-193.
17.Nishina, K., “A comparison of control charts from the viewpoint of change-point estimation,” Quality and Reliability Engineering International, 8, 1992, pp. 537-541.
18.Page, E.S., “Cumulative sum control charts,” Technometrics, 3, 1961, pp. 100-114.
19.Palm, A.C., “SPC versus automatic process control,” Annual Quality Congress Transactions, 44, 1990, pp. 694-699.
20.Paul, G.., H. Philip, and S. Perwez, “Portfolio value-at-risk with heavy-tailed risk factors,” Mathematical Finance, 12(3), 2002, pp. 239-269.
21.Pignatiello, J.J. and T.R. Samuel, “Estimation of the change point of a normal process mean in SPC applications,” Journal of Quality Technology, 33(1), 2001, pp. 82-95.
22.Pignatiello, J.J. and J.R. Simpson, “A magnitude robust control chart for monitoring and estimating step change for normal process mean,” Quality and Reliability Engineering International, 18, 2000, pp. 429-441.
23.Roberts, S.W., “Control chart tests based on geometric moving averages,” Technometrics, 1, 1959, pp. 239-250.
24.Samuel, T.R., J.J. Pignatiello, and J.A. Calvin, “Identifying the time of a step change with control charts,” Quality Engineering, 10(3), 1998, pp. 521-527.
25.Samuel, T.R., J.J. Pignatiello, and J.A. Calvin, “Identifying the time of a step change in a normal process variance,” Quality Engineering, 10(3), 1998, pp. 529-538.
26.Schilling, E.G. and P.R. Nelson, “The effect of non-normality on the control limits of charts,” Journal of Quality Technology, 8(4), 1976, pp. 183-188.
27.Shao, Y.E., “Integrated application of the cumulative score control chart and engineering process control,” Statistica Sinica, 8(1), 1998, pp. 239-252.
28.Shao, Y.E. and C.D. Hou, “A study on identifying the time of a step change disturbance with S control charts and MLE method,” Journal of the Chinese Institute of Industrial Engineers, 21(4), 2004, pp. 349-357.
29.Shao, Y.E., C.D. Hou, and H.J. Wang, “Estimation of the change point of a gamma process by using the S control chart and MLE,” Journal of the Chinese Institute of Industrial Engineers, 2006, to appear.
30.Shao, Y.E. and Y.N. Lin, “Developing an on-line identification strategy with integrated use of SPC and EPC,” Proceeding of the 1997 Joint Statistical Meetings, 1997, pp. 690-695.
31.Shao, Y.E., G.C. Runger, J. Haddock, and W.A. Wallace, ”Adaptive controllers to integrate SPC and EPC,” Communications in Statistics –Simulation and Computation, 28, 1999, pp. 13-36.
32.Shewhart, W.A, “Economic control of quality of manufactured product,” Van Nostrand, New York, 1931.
33.Vander, W.S., W.T. Tucker, F.W. Faltin, and N. Doganaksoy, “Algorithmic statistical process control: concepts and an application,” Technometrics, 34, 1992, pp.286-297.
34.Victor, R. and R. Howard, “ARL comparisons between neural network models and X-bar control charts for quality characteristics that are nonnormally distributed,” Economic Quality Control, 16(1), 2001, pp. 5-15.
35.Von Neumann, J., “Theory and organization of complicated automata,” University of Illinois Press, Urbana, 1949, pp. 29-87 (Part One).
36.Wardrop, D.M. and C.E. Garcia, “Discussion of statistical process monitoring and feedback adjustment-a discussion,” Technometrics, 34, 1992, pp.281-282.
37.Woodall, W.H. and B.M. Adams., “The statistical design of CUSUM charts,” Quality Engineering, 5, 1993, pp.559-570.
38.Yourstone, S.A and W.J. Zimmer, “Non-normality and the design of control charts for averages,” Decision Sciences, 23, 1992, pp. 1099-1113.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top