一、英文文獻
[1]Bryant, A., and Bryant, J., “Recognizing shapes in planar binary images ,” Pattern Recognition, Vol. 22, No. 2, pp.155-164, 1989.
[2]Chan, Y.C., K.C., Huang and X. Dai, “Nondestructive defect detection in multiplayer ceramic capacitors using an improved digital speckle correlation method with wavelet packet noise reduction processing,” IEEE Transactions on Packaging and Manufacturing Technology, Vol. 46, pp.80-87, 2000.
[3]Chen, P.W., T.C. Liang and H.F. Yau, “Classifying textile faults with a back-propagation neural network using power spectra,” Textile Research Journal, Vol. 68, No. 2, pp. 121-126, 1998.
[4]Chan, C.H., and G.K.H. Pang, “Fabric defect detection by fourier analysis,” IEEE Transactions on Industry Application, Vol. 36, No. 5, pp. 1267-1276, 2000.
[5]Chang, C.C., Hwang, S.M., and Buehrer, D.J., “A shape recognition scheme based on relative distances of feature points from the centroid,” Pattern Recognition, Vol. 24, No. 11, pp. 1053-1063, 1991.
[6]Dubois, S.R., and Glanz, F.H., “An atoregressive model approach to tow-dimensional shape classification”, IEEE Transactions on Pattern Annalysis and Machine Intelligence, Vol. 8, No. 1, pp. 67-75, 1986.
[7]Erturk, S. and T.J. Dennis, “Image sequence stabilization based on DFT filtering”, IEE Proc.-Vis. Image Signal Process, Vol. 147, pp. 95-102, 2000.
[8]Fu,K.S., Sequential methods in pattern recognition and machine learning, Academic Press, New York,1968.
[9]Fu, K.S., Syntactic pattern recognition and applications, Prentice-Hall, Englewood Cliffs, New Jersey, 1982.
[10]Fukunaga,K., Introduction to statistical pattern recognition, Academic Press, San Diego, CA, 1972.
[11]Fujiwara, H., Z. Zhong and K. Hashimoto, “Toward automated inspection of textile surfaces removing the textural information by using wavelet shrinkage,” IEEE International Conference on Seoul Korea, pp. 3259-3534, 2001.
[12]Gupta, L., M.D. Srinath, “Invariant planar shape recognition using dynamic alignment,” Internation Pattern Recognition, Vol. 21, No.3, pp. 235-239, l988.
[13]Gonzalez R.C. and R.E.Woods, “Digital image processing,2nd edition, Addison-Wesley, Boston,MA, 2002.
[14]Hu M.C. and I.S. Tasi, “Fabric inspection based on best wavelet packet bases,” Textile Research Journal, Vol. 70, No. 8, pp. 662-670, 2000.
[15]Hu, M. K., “Visual pattern recognition by moment invariants,” IRE Transactions on Information Theory, Vol. 8, pp. 179-187, 1962.
[16]Horaud, R., S. Olympieff, and J. P. Charras, “Shape and position recognition of mechanical parts from their outlines,” Proceedings of the 1st International Conference on Robot Vision and Sensory Controls, pp. 125-134, 1997.
[17]Huynh L.V., “A vision system for in-process surface quality assessment,” Society of Manufacturing Engineers (SME), Vol. 87, pp. 12-51, 1987.
[18]Oh, I.S., and C.Y.Suen, “Distance features for neural network-based recognition of handwritten characters,” International Journal on Document Analysis and Recognition ( IJDAR), Vol. 1, No. 1, pp. 73-88, 1998.
[19]Jagannathon, S., “Automatic inspection of wave solder joints using neural network,” Journal of Manufacturing Systems, Vol. 16, No. 6, pp. 389-398, 1997.
[20]Jin, L.W. and J.Z. Qin, “Car plate number characters recognition using Gabor orientantion features and neural networks,” Proceedings of the 2003 International Conference on Neural Networks and Signal Processing, Vol. 2, pp. 1628-1631, Dec. 2003.
[21]Jain, A.K., “Fundamentals of digital image processing,” Prentice Hall Information and System Sciences Series, pp. 409-411, 1989.
[22]Kumar, A. and G. Pang, “Identification of surface defects in textured materials using wavelet packets,” Proceedings of the 2001 IEEE Industrial Applications Conference, Vol. 1, pp. 247-251, 2001.
[23]Kertesz, A., V. Kertesz, and T. Muller, “An on-line image processing system for registration number identification, ”IEEE International Conference on Neural Networks, Vol. 6, pp. 4145-4148, 1994.
[24]Kido, T., “In-process inspection technique for active-matrix LCD panels, ” International Test Conference, pp. 795-799, 1992.
[25]Kido, T., “In-process functional inspection technique for TFT-LCD array, ” Journal of SID, Vol. 1, No. 4, pp. 429-435, 1993.
[26]Kido, T., N. Kishi, and H. Takahashi, “Optical charge-sensing method for testing and characterizing thin-film transistor arrays,” IEEE Journal of Selected Topics in Quantum Electronics, Vol. 1, No. 4, pp. 993-1001, 1995.
[27]Kittler, J. and J. Illingworth, “Minimum error thresholding, ”Pattern Recognition, Vol. 19, No. 1, pp. 41-47, 1986.
[28]Kohonen, T., “The self-organizing map,” Proceedings of the IEEE, Vol. 78, pp. 1464-1480, 1990.
[29]Kim, S., M.H. Lee and K.B. Woo, “Wavelet analysis to fabric defects detection in weaving processes,” Proceedings of the IEEE International Symposium on Industrial Electronics, Vol. 3, pp. 1406-1409, 1999.
[30]Latif-Amet, A.L., A. Ertuzun and A. Ercil, “Texture defect detection using subband domain co-occurrence matrices,” Image Analysis and Interpretation, pp. 205-210, 1998.
[31]Looney, G.G., Pattern recognition using neural network, Oxford University Press, Inc., 1997.
[32]Liu, S.S. and M.E. Jernigan, “Texture analysis and discrimination in additive noise,” Computer Vision, Graphics, and Image Processing, Vol. 49, pp. 52-67, 1990.
[33]Lin, C.S., W.Z. Wu, Y.L. Lay and M.W. Chang, “A digital image-base measurement system for a LCD backlight module,” Optics & Laser Technology, Vol. 33, No. 7, pp. 499-505, 2001.
[34]Lambert, G. and F. Bock, “Wavelet method for texture defect detection,” Proceedings of the IEEE International Conference on Image Processing, Vol. 3, pp. 201-204, 1997.
[35]NEC (Nippon Electric Company) , “Improvements in or relating to character recognition apparatus,”U.K. Patent, Vol. 1, pp. 124-130, Aug. 1968.
[36]Nakashima, K., “Hybrid inspection system for LCD color filter panels, ” Proceedings of the Tenth International Conference on Instrumentation and Measurement Technology, Hamamatsu, Vol. 2, pp.689-692, 1994.
[37]Neubauer, C. , “Intelligent X-Ray inspection for quality control of solder joints, ”IEEE Transformation on Component, Packaging, and Manufacturing Technology, Vol.20, No.2, pp.111-120, 1997.
[38]Pu, H., H. Wei, D.F. Wang and Y.J. Zhai, “Car license plate feature extraction and recognition base on multi-stage classifier,” Proceedings of the International Conference on Machine Learning and Cybernetics, Vol. 1, pp. 128-132, Nov. 2003.
[39]Pandya, A. S., R.B. Macy, Pattern recognition with neural network in C++, CRC Press & IEEE Press, 1996.
[40]Parisi, R., E. D. Di Claudio, G. Lucarelli and G. Orlandi, “Car plate recognition by neural networks and image processing,” Proceedings of the 1998 IEEE International Symposium on Circuits and Systems, Vol. 3, pp. 195-198, 1998.
[41]Richard, O.D., E.H. Peter and G.S. David, Pattern classification, 2nd ed., John Wiley and Sons, New York, NY, USA, 2001.
[42]Raus, M. and L. Kreft, “Reading car license plates by the use of artificial neural networks,” Processings of the 38th Midwest Symposium on Circuits and Systems, Vol. 1, pp. 538-541, 1995.
[43]Ryu, Y.K. and H.S. Cho, “Visual inspection scheme for using in optical solder joint inspection system,” Proceedings of the IEEE International Conference on Robotics and Automation, Minneapolis, MN , Vol. 4, pp. 3259-3264, 1996.
[44]Tindall, D.W., “Application of neural network techniques to automatic license plate recognition,” European Convention on Security and Detection, Brighton, pp. 81-85, 1995.
[45]Tsai, D.M., and C.Y. Hsieh, “Automated surface inspection for directional textures, ” Image and Vision Computing, Vol. 18, pp. 49-62, 1999.
[46]Tsai, I.S., C.H. Lin and J.J. Lin, “Applying an artificial neural network to pattern recognition in fabbic detects,” Texible Research Journal, Vol. 65, No. 3, pp. 123-130, 1995.
[47]Wang, X.W., X.Q.Ding and C.S.Liu, “Optimized Gabor filter based feature extraction for character recognition, ” Proceedings of the International Conference on Pattern Recognition, Vol. 4, pp. 223-226, Aug. 2002.
[48]Yang, C.C., and S.C.Chi, “An ant-base self-organization feature maps algorithm, ”Proc.The 5th Workshop on Self-Organization Maps, Paris, France, pp.65-73, 2005.
[49]Zahn, C. T., and R. Z. Roskies, “Fourier descriptor for plane closed curves,” IEEE Transactions on Computer, Vol. 21, No. 3, pp. 269-281, 1972.
[50]Zhang, T.Y., and C. Y. Suen, “A fast parallel algorithm for thinning digital pattern,” Communication of the ACM, Vol. 27, No. 3, pp. 236-239, 1984.
二、中文文獻
[51]王進德、蕭大全(1994),類神經網路與模糊控制理論入門,全華科技圖書公司。
[52]田榮雯(2001),以FPGA實現倒傳遞類神經網路並應用於肌電圖分類,私立中原大學資醫學工程研究所,碩士論文。[53]林東賦(2001),應用影像處理技術與類神經網路理論於非織物瑕疵辨識,國立台灣科技大學纖維及高分子工程研究所,碩士論文。[54]紀國鐘、鄭晃忠(2004),液晶顯示器技術手冊,經濟部技術處台灣電子材料與元件協會,新竹。
[55]洪崇祐(2004),應用一維傅立葉分析於TFT-LCD液晶顯示面板之瑕疵檢測,私立元智大學工業工程與管理研究所,碩士論文。[56]侯東旭、陳健諭(1994),「使用類神經網路於工件辨識之研究」,亞太工業工程研討會第八十三年論文集,第432-437頁。
[57]高祥益(2004),液晶顯示器透明電極線缺陷型態辨識之研究,國立高雄應用科技大學機械與精密工程研究所,碩士論文。[58]連國珍(2004),數位影像處理,儒林,台北。
[59]陳一斌(2001),「TFT彩色濾光片瑕疵檢測系統」,機械工業雜誌12月號,第225期,第204-209頁。[60]郭正德(2003),應用小波轉換作紋理影像之瑕疵檢測及合成,國立中央大學資訊工程研究所,碩士論文。[61]陳進興(1993),「圖形辨識方法對自動目標分類之分析比較」,國科會學術合作計畫報告,台南。
[62]陳緯達(2004),類神經網路在手寫數字辨識之研究,國立中央大學資訊工程研究所,碩士論文。[63]陳志忠(2001),液晶顯示器的像素點缺陷與相對亮度均一性之自動化檢測,私立中原大學機械工程學研究所,碩士論文。[64]陳世璋(2005),使用類神經網路之自動化臉部表情辨識系統,國立成功大學電腦與通信工程研究所,碩士論文。
[65]陳鵬帆(2004),以自適應共振理論網路為基礎建構彩色濾光片微觀瑕疵辨識系統之研究,國立成功大學工業與資訊管理學系,碩士論文。[66]陳飛龍、謝詳文(2002),「特徵為基礎之晶圓缺陷圖樣辨識與分類演算法」,中國工業工程學會期刊,第四期,第九卷,第17-19頁。
[67]許文豪(2000),圖形識別概述與實作,國立清華大學資訊工程系,碩士論文。[68]黃國源(2003),類神經網路與圖形識別,維科,台北。
[69]黃哲韻(2001) ,應用機器視覺於隨機性紋路表面之瑕疵檢測,私立元智大學工業工程與管理研究所,碩士論文。[70]曾彥馨(2003),應用機器視覺於TFT面板之表面瑕疵檢測與分類,私立元智大學工業工程與管理研究所,碩士論文。[71]溫福助(2000),類神經網路樣板比對法於車牌字元辨識之研究,國立台灣大學電機工程學研究所,碩士論文。[72]葉怡成(2000),類神經網路模式應用與實作,儒林,台北。
[73]蔡英男(2003),應用影像處理與類神經網路於偏光膜瑕疵分析,國立台灣科技大學纖維與高分子工程研究所,碩士論文。[74]繆紹綱(2005),數位影像處理―活用Matla,全華,台北。
[75]錢志豪(2002),建構液晶顯示器(LCD)色彩偏差瑕疵之自動化視覺檢測系統之探討,私立朝陽科技大學工業工程研究所,碩士論文。[76]顧鴻壽(2004),光電液晶平面顯示器技術基礎及應用,新文京,台北。