跳到主要內容

臺灣博碩士論文加值系統

(18.97.9.171) 您好!臺灣時間:2024/12/09 12:38
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:黃仁鋒
研究生(外文):Jen-Feng Huang
論文名稱:模擬退火法應用於支援向量機之參數調整與屬性篩選
論文名稱(外文):A SA-Based Feature Selection and Parameter Optimization Approach for pport Vector Machine
指導教授:林 詩 偉
指導教授(外文):Shih-Wei Lin
學位類別:碩士
校院名稱:華梵大學
系所名稱:資訊管理學系碩士班
學門:電算機學門
學類:電算機一般學類
論文種類:學術論文
論文出版年:2006
畢業學年度:94
語文別:中文
論文頁數:52
中文關鍵詞:模擬退火法格子搜尋法屬性篩選支援向量機
外文關鍵詞:Support Vector MachineGrid SearchSimulated AnnealingFeature selection
相關次數:
  • 被引用被引用:7
  • 點閱點閱:425
  • 評分評分:
  • 下載下載:81
  • 收藏至我的研究室書目清單書目收藏:1
支援向量機是一種新的資料探勘分類技術且成功運用在許多領域。在支援向量機訓練過程中,參數設定及輸入屬性皆會影響分類正確率。本研究目的在不影響分類正確率情況下,搜尋最佳參數組合及同時尋找最小屬性集合。以模擬退火法為基礎進行SVM參數最佳化和屬性篩選的方法稱為SA-SVM。
本研究使用模擬退火法及grid search傳統參數搜尋方式進行測試UCI資料集,並與其它文獻所提出的方法做比較。此外,利用主成分分析來進行屬性篩選與本研究提出SA-SVM屬性篩選相比較其效果。實驗結果顯示在無屬性篩選方面以SA-SVM為基礎的所測得分類正確率優於grid search及相關文獻。在屬性篩選方面,本研究所提出SA-SVM測得分類正確率也優於主成分分析。因此SA-SVM可幫助SVM搜尋最佳參數組合及屬性集合。
Support Vector Machine (SVM) is a new technique for pattern classification, and can be used in many applications. Kernel parameters setting in the SVM training process, along with the feature selection, will significantly impact the classification accuracy. The objective of this research was to simultaneously optimize the parameters while finding a subset of features without degrading SVM classification accuracy. A simulated annealing (SA) based approach denoted as SA-SVM for parameter optimization and feature selection of SVM is developed.
Several UCI datasets are tested using the SA-based approach and the grid search which is a traditional method of performing parameter setting. And the developed SA-based approach was compared with grid search and other approaches. Besides, the SA-based approach for feature selection was compared with the principle component analysis. Without the feature selection, the experimental result shows that the classification accuracy rates of SA-SVM are better than those of grid search and other approaches. As for the feature selection, the classification accuracy rates of SA-SVM are also better than those of the principle component analysis. Therefore, the proposed SA-SVM approach is useful for parameter optimization and feature selection for SVM.
誌 謝………………………………………………………………… Ⅰ
摘 要………………………………………………………………… Ⅱ
Abstract…………………………………………………………………Ⅲ
目 錄………………………………………………………………… Ⅲ
表 錄………………………………………………………………… Ⅵ
圖 錄………………………………………………………………… Ⅶ
一、緒論……………………………………………………………… 1
1.1 研究背景與動機…………………………………………….. 1
1.2 研究目的…………………………………………………….. 3
1.3 研究限制…………………………………………………….. 3
1.4 研究流程…………………………………………………….. 4
二、文獻探討…………………………………………………………. 6
2.1 支援向量機………………………………………………….. 6
2.1.1 線性支援向量機………………………………….….. 6
2.1.2 非線性支援向量機………………………………….... 8
2.1.3 不完美分割非線性支援向量機……………………… 9
2.2 模擬退火法………………………………………………….. 11
2.3 Hide-and-seek SA……………………………………………. 13
2.4 搜尋初始解方式……………..…………………………….... 15
2.5 屬性篩選…………………………………………………….. 16
2.5.1 Wrapper model……………………………................... 17
2.5.2 Filter model……………………………………………. 18
2.6 相關參數搜尋方法………………………………………….. 20
2.7 主成份分析基本概念……………………………………….. 22
2.8 相關文獻探討……………………………………………….. 25
三、研究方法………………………………………………………….. 28
3.1 編碼方式……………………………………………………... 28
3.2 尋求SVM分類最佳正確率之實驗步驟…………………… 28
3.3 資料處理與環境…………………..……………………….… 32
3.3.1 開發環境…………………….………………………... 32
3.3.2 資料前處理與正規化……………………………….... 32
3.3.3 資料分類方法……………………………………….... 33
3.4 參數選擇…………………………………………………...... 35

四、實驗結果……………………………………………………….… 35
4.1 實驗結果…………………………………………………… 39
4.1.1 文獻比較…………………………………………….. 39
4.1.2 各方面實驗結果之檢定…………………………….. 41
五、結論與後續研究…………………………………………………. 47
參考文獻………………………………………………………………. 49
[1]羅中育,「田口品質工程應用於模擬退火法參數組合之研究---以旅行推銷員問題(TSP)為例」,雲林科技大學工業工程與管理研究所碩士論文,民國90年.
[2]胡崇銘,「以主成分分析評估基金績效與風險」,國立臺灣大學商學研究所博士論文,民國89年.
[3]王亞倫,「診斷多變量管製圖之研究」,國立中央大學工業管理研究所碩士論文,民國89年.
[4]陳孝先,「應用主成份得分分佈函數探勘客戶貢獻度與忠誠度之研究」,私立東海大學資訊工程與科學系碩士論文,民國94年.
[5]周文賢,「多變量統計分析SAS/STAT 使用方法,智勝書局,台北,民國91年.
[6]吳智鴻,「結合基因演算法最佳化「支持向量機」參數~財務危機上之應用」,國立台北大學企業管理學系博士論文,民國93年.
[7]陳芃暐,「使用基因演算法完成支援向量機的模型選擇」,國立台灣科技大學電子工程系碩士論文,民國92年.
[8]王界人,「遺傳演算法應用於支援向量機之參數調整與屬性篩選」,私立華梵大學資訊管理學系碩士論文,民國94年.
[9]李育昇,「支援向量機器於可靠度系統之應用」,私立大葉大學工業工程學系碩士論文,民國93年.
[10]段建帆,「支援向量機之最佳化參數與屬性篩選之分散式資料探勘系統—以粒子群最佳化演算法為基礎」,私立華梵大學資訊管理學系碩士論文,民國94年.
[11]林東毅, 「結合粗略集合論、支援向量機及最佳化演算法於顧客關係管理之應用」,私立大葉大學工業工程與科技管理學系碩士論文,民國95年.
[12]楊舜麟,「最佳化演算法於支援向量迴歸參數選擇之分析」,私立大葉大學工業工程與科技管理學系碩士論文,民國95年.
[13]黃仁澤,「對於高維度資料進行特徵選取-應用於分類蛋白質質譜儀資料」,國立政治大學統計研究所碩士論文,民國94年.
[14]劉家輝,「支援向量機器理論預測DNA結合蛋白」,私立中華大學資訊工程學系碩士論文,民國93年.
[15]謝忠訓,「以支援向量機結合權重投票機制之網頁分類研究」,私立朝陽科技大學資訊管理系碩士論文,民國94年.
[16]鄭清俊,「應用類神經網路與支援向量機於目標客戶選取」,國立成功大學資訊管理研究所碩士論文,民國94年.
[17]胡翠峰,「模糊相關與支援向量學習應用在文件多重分類問題之研究」,私立義守大學資訊管理學系碩士論文,民國93年.
[18]Vapnik, V. N., The Nature of Statistical Learning Theory. New York: Springer, 1995.
[19]Cao, L. J. and Tay, F. E. H., “Support Vector Machine with Adaptive Parameters in Financial Time Series Forecasting,” IEEE Transactions on Neural Network, vol. 14, no. 6, 2003, pp. 1506-1518.
[20]Cai, Y. -D., Liu, X. -J., Xu, X. -B. and Chou, K. -C., “Prediction of Protein Structural Classes by Support Vector Machines,” Computers and Chemistry, vol. 26, 2002, pp. 293–296.
[21]Valentini, G., “Gene Expression Data Analysis of Human Lymphoma Using Support Vector Machines and Output Coding Ensembles,” Artificial Intelligence in Medicine, vol. 26, 2002, pp. 281–304.
[22]Ng, J. and Gong, S., “Composite Support Vector Machines for Detection of Faces Across Views and Pose Estimation,” Image and Vision Computing, vol. 20, 2002, pp. 359-368.
[23]Guo, Q., Kelly, M. and Graham, C. H., “Support Vector Machines for Predicting Distribution of Sudden Oak Death in California,” Ecological Modelling, vol. 182, 2005, pp. 75–90.
[24]Shin, K. -S., Lee, T. -S. and Kim, H. -J., “An Application of Support Vector Machines in Bankruptcy Prediction Model,” Expert Systems with Applications, vol. 28, 2005, pp. 127–135.
[25]Liang, J. -Z., “SVM Multi-Classifier and Web Document Classification,” Proceedings of the Third International conference on Machine Learning and Cybernetics, vol. 3, 2004, pp. 1347- 1351.
[26]Keerthi. S. S. and Lin, C. -J., “Asymptotic Behaviors of Support Vector Machines with Gaussian kernel,” Neural Computation, vol. 15, 2003, pp. 1667-1689.
[27]Jack, L. B. and Nandi, A. K., “Fault Detection Using Support Vector Machines and Artificial Neural Networks, Augmented by Genetic Algorithms,” Mechanical Systems and Signal Processing, vol. 16, 2002, pp. 373-390.
[28]Shon, T., Kim, Y., Lee, C. and Moon, J., “A Machine Learning Framework for Network Anomaly Detection Using SVM and GA,” Proceedings of IEEE Workshop on Information Assurance and Security, vol. 2, 2005, pp. 176–183.
[29]Chen, R. -C. and Hsieh, C. -H., “Web Page Classification Based on a Support Vector Machine Using a Weighed Vote Schema,” Expert Systems with Applications. (In Press).
[30]Gold, C., Holub, A. and Sollich, P., “Bayesian Approach to Feature Selection and Parameter Tuning for Support Vector Machine Classifiers,” Neural Networks, vol. 18, 2005, pp. 693–701.
[31]Pai, P. -F. and Hong, W. -C., “Support Vector Machines with Simulated Annealing Algorithms in Electricity Load Forecasting,” Energy Conversion and Management, vol. 46, 2005, pp. 2669–2688.
[32]Pai, P. -F. and Hong, W. -C., “Software Reliability Forecasting by Support Vector Machines with Simulated Annealing Algorithms,” The Journal of Systems and Software, 2005. (In Press)
[33] Samanta, B., Al-Balushi, K. R. and Al-Araimi, S. A., “Artificial neural Networks and Support Vector Machines with Genetic Algorithm for Bearing Fault Detection,” Engineering Applications of Artificial Intelligence, vol. 16, 2003, pp. 657–665.
[34]Romeijn, H. E., Zabinsky, Z. B., Graesser, D. L. and Neogi, S., “New Reflection Generator for Simulated Annealing in Mixed-Integer/Continuous Global Optimization,” Journal of Optimization Theory and Applications, vol. 101, 1999, pp. 403–427.
[35]Romeijn, H. E. and Smith, R. L., “Simulated Annealing for Constrained Global Optimization,” Journal of Global Optimization, vol. 5, 1994, pp. 101–126.
[36]Hettich, S., Blake, C. and Merz, C., (1998). UCI repository of machine information and computer sciences, Available: http://www.ics.uci.edu/~mlearn/MLRepository.html.
[37]Salzberg, S. L., “On Comparing Classifiers: Pitfalls to Avoid and a Recommended Approach,” Data Mining and Knowledge Discovery, vol. 1, 1997, pp. 317–327.
[38]Burgers, C. J. C., “A Tutorial on Support Vector Machines for Pattern Recognition,” Data Mining and Knowledge Discovery, vol. 2, 1998, pp. 121–167.
[39]Zhang, Y. L., Guo, N., Du, H. and Li, W. H., “Automated Defect Recognition of C-SAM Image in IC Packaging Using Support Vector Machines,” International Journal of Advanced Manufacturing Technology, vol. 25, 2005, pp. 1191-1196.
[40]Lin, H. -T. and Lin, C. -J., “A Study on Sigmoid Kernels for SVM and the Training of Non-PSD Kernels by SMO-type Methods,” Taiwan, Tech. Rep. (1-32), March. 2003.
[41]Müller, K. R., Mike, S., Rätsch, G., Tsuda, K. and Schölkopf, B., “An Introduction to Kernel-Based Learning Algorithms,” IEEE Transactions on Neural Networks, vol. 12, 2001, pp. 181-202.
[42]Pardo, M. and Sberveglieri, G., “Classification of Electronic Nose Data with Support Vector Machines,” Sensors and Actuators B Chemical, vol. 107, 2005, pp. 730–737.
[43]Metropolis, N., Rosenbluth, A. W., Rosenbluth, M. N., Teller, A. H. and Teller, E., “Equation of State Calculations by Fast Computing Machines,” The Journal of Chemical Physics, vol. 21, 1953, pp. 1087–1092.
[44]Kirkpatrick, S., Gelatt, C. D., Jr., and Vecchi, M. P., “Optimization by Simulated Annealing,” Science, vol. 220, 1983, pp. 671-680.
[45]Liu, H., and Motoda, H., Feature Selection for Knowledge Discovery and Data Mining, Norwell, MA: Kluwer Academic, 1998.
[46] Kohavi, R., and John, G. H., “Wrappers for Feature Subset Selection,” Artificial Intelligence, 1997, pp. 273-324.
[47]Özge, U. and Türksen, I. B., “A Novel Feature Selection Approach: Combining Feature Wrappers and Filters,” Information Sciences, 2006. (In Press)
[48]Mladenic, D. and Grobelnik, M., “Feature Selection on Hierarchy of Web Documents,” Decision Support Systems, vol. 35, 2003, pp. 45-87
[49]Acır, N., Özdamar, Ö. and Guzelis, C., “Automatic Classification of Auditory Brainstem Responses Using SVM-based Feature Selection Algorithm for Threshold Detection,” Engineering Applications of Artificial Intelligence, vol. 19, 2006, pp. 209–218.
[50]Valentini, G., Muselli, M. and Ruffino, F., “Cancer Recognition with Bagged Ensembles of Support Vector Machines,” Neurocomputing, vol. 56, 2004, pp. 461–466.
[51]Zhang, L., Jack, L. B. and Nandi, A. K., “Fault Detection Using Genetic Programming,” Mechanical Systems and Signal Processing, vol. 19, 2005, pp. 271-289.
[52]Hsu, C. -W., Chang, C. -C. and Lin, C. -J., “A Practical Guide to Support Vector Classification,” Taiwan, Tech. Rep. (1-12), July. 2003.
[53]Wang, J., Wu, X. and Zhang, C., “Support Vector Machines Based on K-means Clustering for Real-Time Business Intelligence Systems,” International Journal of Business Intelligence and Data Mining, vol. 1, 2005, pp. 54-64.
[54]Wei, Y. and Lin, C. -J., Feature Extraction, Foundations and Applications. Springer, 2005.
[55]Pai, P. -F. and Hong, W. -C., “Forecasting Regional Electricity Load Based on Recurrent Support Vector Machines with Genetic Algorithms,” Electric Power Systems Research, vol. 74, 2005, pp. 417–425.
[56]Fung, G. and Mangasarian, O. L., “Finite Newton Method for Lagrangian Support Vector Machine Classification,” Neurocomputing, vol. 55, 2003, pp. 39-55.
[57]Liao, Y., Fang, S. -C. and, Nuttle, H. L. W., “A Neural Network Model with Bounded-Weights for Pattern Classification,” Computers and Operations Research, vol. 31, 2004, pp. 1411–1426.
[58]Bennett, K. P. and Blue, J. A., “A Support Vector Machine Approach to Decision Trees,” Proceedings of IEEE World Congress on Computation Intelligence, 1997, pp. 2396-2401.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top