跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.90) 您好!臺灣時間:2025/01/22 13:54
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:孫維良
研究生(外文):Wei Liang Sun
論文名稱:操作參數對質子交換膜燃料電池堆中各單電池及其整體性能之影響
論文名稱(外文):Effects of operating conditions on the performance in each single cell and stack of PEM fuel cell
指導教授:顏維謀顏維謀引用關係
指導教授(外文):Wei-Mon Yan
學位類別:碩士
校院名稱:華梵大學
系所名稱:機電工程研究所
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2006
畢業學年度:94
語文別:中文
論文頁數:107
中文關鍵詞:電池堆單電池電壓交換膜整體性劑量電池方式操作參數
外文關鍵詞:operating conditionsPEM fuel celleach single cell
相關次數:
  • 被引用被引用:1
  • 點閱點閱:248
  • 評分評分:
  • 下載下載:70
  • 收藏至我的研究室書目清單書目收藏:0
在燃料電池實驗中,對於電池性能影響較大的因素有氣體加濕溫度、電池溫度、扭力與氣體流量等操作參數。因此,本論文旨在以實驗量測方式,探論燃料電池堆中,不同操作條件對各單電池及其電池堆整體性能的影響。本論文中使用五顆堆疊之燃料電池堆進行各單電池的電壓及電流量測。由實驗結果顯示,在固定電池堆電壓輸出時,電池堆中央部份之單電池會有較差的電壓輸出與性能表現,而靠近電池堆兩側之單電池則有較佳的電壓及性能。有關陽極加溼溫度效應方面,量測結果發現隨著加溼溫度的提升,電池堆整體之性能有明顯的上升趨勢,特別電池堆中央部份之單電池,其性能提升最為顯著。在電池溫度效應方面,由實驗數據可發現,電池堆整體性能隨電池溫度的增加而上升,但電池溫度對各單電池之性能影響,則會使各單電池的性能變的較不平均,當電池溫度超過70℃時電池會發生過乾致使電池整體性能急遽下降。在陽極氣體化學劑量效應方面,隨著化學劑量的上昇,電池堆中各單電池之間的性能比與電池堆整體之性能並無明顯之差異。在陰極氣體化學劑量效應方面,量測結果顯示,電池堆中各單電池之性能比與整體電池堆之性能皆隨著陰極氣體化學劑量之增加而提昇。
In the experiment of PEM fuel cell, there are four key operating conditions which would affect the cell performance. They are gas humidify temperature, cell temperature, torsion, and gas flow rate. Accordingly, the main focus is to examine the effects of these four operation conditions on the performance in each single cell and stack of PEM fuel cell. In this thesis, a 5-cells stack was used to measure the each single cell’s voltage and current. The experiment results reveal that the each single cell’s voltage and performance near the center part of stack is relatively lower than that of the two side part of stack. As for the effects of anode humidify temperature, the experiment results indicate that the the stack’s performance increases with the increase in the anode humidification temperature, especially for the each single cell’s performance near the center part of stack. As for the effects of cathode humidifification temperature, the measured data clearly show that the stack’s performance and the each single cell’s performance are the same trend as the effects of anode humidification temperature. As for the effects of cell temperature, the experiment results reveal that the stack’s performance increases with the increase in the cell temperature, but the performance between each single cell becomes more and more unbalance. This is due to the fact that the membrane will dry out and cause the internal resistance if the cell temperature is above 70℃. Therefore, the cell temperature must be controlled at the suitable range. As for the effects of anode gas stoich ratio, the measured results disclose that the stack’s and each single cell’s performance do not change with the increase in the anode gas stoich ratio apparently. As for the the effects of cathode gas stoich ratio, the experiment results reveal that both of the stack’s and each single cell’s performance increase with an increase in the cathode stoich ratio. Finally, the experiment results reveal that the whole stack’s performance increase with the increase in the torsion.
摘要 I
目錄 IV
圖目錄 VII
表目錄 XI
符號說明 XII
第一章 前言 1
第二章 文獻回顧 3
2.1 單電池電壓的量測 3
2.2 電池堆的測試 7
2.3 材料的使用與電池的設計 10
第三章 各操作參數對燃料電池之影響 17
3.1 溫度效應 17
3.1.1 陽極氣體加濕溫度 18
3.1.2 陰極氣體加濕溫度 18
3.1.3 電池溫度 19
3.2 化學劑量 19
3.2.1 陽極氣體化學劑量數 20
3.2.2 陰極氣體化學劑量 21
3.2.3 冷卻流道流量 21
第四章 實驗設備與方法 23
4.1 燃料電池材料與規格 23
4.1.1 端板 23
4.1.2 集電板 23
4.1.3 極板 24
4.1.4 氣密墊片 24
4.1.5 膜電極組 24
4.2 實驗設備 25
4.2.1 溫度控制系統 26
4.2.2 溼度控制系統 26
4.2.3 氣體供應系統 26
4.2.4 電子負載 27
4.2.5 流量控制系統 27
4.3 實驗步驟與關機程序 28
4.3.1 開機前檢查步驟 28
第五章 結果與討論 37
5.1 不同操作參數對燃料電池性能之影響 37
5.1.1 各單電池電壓分佈之情況 38
5.1.2 陽極加溼溫度 38
5.1.3 陰極加溼溫度 39
5.1.4 電池溫度之影響 40
5.1.5 陽極氣體化學劑量 41
5.1.6 陰極氣體化學劑量 42
5.1.7 扭力 43
參考文獻 93
Chu, D. and Jiang, R., 1999, “Performance of electrolyte membrane fuel cell(PEMFC) stacks Part I. Evaluation and simulation of an air-breathing PEMFC stack,” J.Power Sources, Vol. 83, pp. 128-133.
  Giddey, S., Ciacchi, F.T. and Badwal, S.P.S., 2004, “Design, assembly and operation of polymer electrolyte membrane fuel cell stacks to 1 kW capacity,” J. Power Sources, Vol.125, pp.155-165.
  Heideck, G., Purmann, M. and Stycznski, Z., 2005, “Multi channel voltage control for fuel cells,” J. Power Sources, Vol.145, pp.594-597.
  Jinag, R. and Chu, R., 2001, “Stack design and performance of polymer electrolyte membrane fuel cells,” J.Power Sources, Vol. 93, pp. 25-31.
  Knobbe, M.W., He, W., Chong, P.Y and Nguyen, T.V., 2004, “Active gas management for PEM fuel cell stacks,” J.Power Sources, Vol. 138, pp. 94-100.
  Li, X. and Sabir, I., 2005, “Review of bipolar plates in PEM fuel cells:Flow-field designs,” J.Hydrogen Energy, Vol. 30, pp. 359-371.
  Mennola, T., Mikkola, M., Noponen, M., Hottinen, T. and Lund, P., 2002, “Measurement of ohmic voltage losses in individual cells of a PEMFC stack,” J. Power Sources, Vol.112, pp.261-272.
  Pehnt, M., 2001, “Life-cycle assessment of fuel cell stacks,” J. Hydrogen Energy, Vol.26, pp.91-101.
  Qi, Z. and Kaufman, A., 2002, “Improvement of water management by a microporous sublayer for PEM fuel cells,” J. Power Sources, Vol.109, pp.38-46.
  Qi, Z. and Kaufman, A., 2002, “PEM fuel cell stacks operated under dry-reaction conditions,” J.Power Sources, Vol. 109, pp. 469-476.
  Rodatz, P., Buchi, F., Onder, C. and Guzzella, L., 2004, “Operation aspects of a large PEFC stack under practical condition,” J. PowerSources, Vol.128, pp.208-217.
  Sohn, Y.J., Park, G.G., Yang, T.H., Yoon, Y.G., Lee, W.Y., Yim, S.D. and Kim, C.S., 2005, “Operating characteristic of an air-cooling PEMFC for portable Application,” J. Power Sources, Vol.145, pp.604-609.
Tanaka, T., Otsuka, K., Oyakawa, K. and Watanabe, S., 2005,“Development of a performance test methode for PEFC stack,” J.Power Sources, Vol. 147, pp. 208-213.
  Voss, H.H., Wilinson, D.P., Picup, P.G., Johnson, M.C. and Basura, V., 1995, “Anode water removal : a water management and diagnostic technique for solid polymer fuel cells,” Electrochmica Acta, Vol.40, No.3, pp.321-328.
  Yi, J.S. and Nguyen,T. V., 1999, “Multicomponent transport on porous electrodes of proton exchange membrane fuel cells using the interdigitated gas distributors,” J. Electrochemical Society, Vol.146, pp.38-45.
  Zhu, W.H., Payne, R.U., Cahela, D.R and Tatarchuk, B.J., 2004, “Uniformity analysis at MEA and stack Levels for a Nexa PEM fuel cell system,” J. Power Sources, Vol.128, pp.231-238.
  熊思凱., 2001, “實驗方法探討質子交換膜燃料電池在不同設計條件及製作方式下對性能影響之研究,” 國立中山大學機械工程學系碩士論文.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top