(100.26.179.251) 您好!臺灣時間:2021/04/12 21:54
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:蔡明璇
研究生(外文):Ming-Shiuan Chai
論文名稱:平板型散熱片於橫流道冷卻之熱流特性研究
論文名稱(外文):Thermal-Fluid Characteristics of Plate-Fin Heat Sinks Cooled by Cross Flows
指導教授:李弘毅李弘毅引用關係
指導教授(外文):Hung-Yi Li
學位類別:碩士
校院名稱:華梵大學
系所名稱:機電工程研究所
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2006
畢業學年度:94
語文別:中文
論文頁數:83
中文關鍵詞:橫流散熱片平板型鰭片空氣冷卻散熱片可靠度平板型雷諾數效果
外文關鍵詞:cross flow、heat sink、plate fin、air coolingsystemdata
相關次數:
  • 被引用被引用:1
  • 點閱點閱:382
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:127
  • 收藏至我的研究室書目清單書目收藏:0
為了維持電子設備工作穩定及延長其使用壽命,優良的熱管理技術是必要的,空氣強制對流冷卻系統具有清潔、便利與高可靠度等優點,長久以來皆為電子設備冷卻之主流。本論文利用數值模擬方式,在固定加熱量的條件下,以改變流速、鳍片數目與鰭片尺寸等參數,探討空氣橫流冷卻平板型散熱片之熱流現象。
研究結果顯示數值模擬結果與文獻中之實驗數據趨勢一致,增加雷諾數與鰭片高度可以有效提升熱傳效率,但其效果會隨著雷諾數或鰭片高度的持續增加而趨於平緩。適度增加鰭片寬度可以增加散熱效益,但過大的鰭片寬度容易導致冷卻流體不易進入散熱片流道內部進行熱交換。而在低雷諾數環境中,鰭片高度與寬度的效應比高雷諾數環境中大,所以在低雷諾數環境中必須慎選散熱片之幾何尺寸,以發揮最佳散熱效果。
In order to keep the electronic equipment to work stably and extend its life, superior thermal management is necessary. The forced convection air cooling system has the advantages of cleanness, convenience and high reliability. It is the main stream of the cooling technique for electronic equipment. In this thesis, numerical simulation is used to investigate the thermal-fluid characteristics of plate fin heat sinks subjected to a fixed heating power in a cross flow by varying the Reynolds number, the fin number, and the fin geometry.
It is found that the numerical results and the experiment data in the literature show excellent agreement. Increasing the Reynolds number and the fin height can improve the heat transfer efficiency, but the improvement degrades when the Reynolds number or the fin height increases. The heat transfer efficiency can be increased by increasing the fin width properly. Excessive large fin width will result in difficulty of air flow into the inner channels for heat exchange. At low Reynolds numbers, the effects of the fin height and the fin width are more significant than those at high Reynolds numbers. Therefore, it is of importance to choose suitable heat sink geometry at low Reynolds numbers.
摘要 I
Abstract II
目錄 III
圖錄 VII
表錄 XII
表錄 XII
符號說明 XIII
ㄧ、前言 1
二、文獻回顧 3
2.1平板型散熱片設計 3
三、理論模式 11
3.1統御方程式 11
3.1.1 質量守恆方程式 11
3.1.2 動量守恆方程式 12
3.1.3 能量守恆方程式 12
3.1.4 熱傳導方程式 12
3.2 紊流模式 12
3.2.1 雷諾平均方程式 13
3.2.2 RNG κ-ε紊流模式 14
3.3 邊界條件 15
3.3.1入口邊界條件 15
3.3.2 出口邊界條件 16
3.3.3 壁面邊界條件 16
3.3.4 散熱片加熱面與熱傳導固體散熱片邊界 18
3.3.5 散熱片與流體介面 18
3.4 離散化 19
3.5 薄膜溫度 19
四、幾何模型建立與數值分析 21
4.1 前處理 21
4.1.1 平板型散熱片 21
4.1.2 加熱片 21
4.1.3 入口邊界 22
4.1.4 網格產生 22
4.2 數值計算 23
4.3 後處理 23
五、散熱片熱傳效益評估 28
5.1 整體熱傳速率 28
5.2 熱阻 29
六、結果與討論 30
6.1 數值模擬與實驗結果比較 31
6.2 流場的壓力、速度與溫度分布 31
6.2.1 壓力分布 31
6.2.2 速度分布 32
6.2.3 溫度分布 33
6.3 散熱片表面溫度分布 34
6.4 各種參數對於熱阻的影響 37
6.4.1 鰭片寬度對熱阻的影響 37
6.4.2 底板厚度對熱阻的影響 37
6.4.3 鰭片數對熱阻的影響 38
6.4.4 鰭片高度對熱阻的影響 39
6.4.5 鰭片寬度與鰭片高度對熱阻的影響 40
6.4.6 鰭片寬度、鰭片高度與底板厚度對熱阻的影響 41
七、結論與未來展望 77
7.1 結論 77
7.2 未來展望 78
參考文獻 79
作者簡介 83
1.李弘毅, 陳冠穎, 姜明宏, 趙上茗, ”散熱片於流道中熱流特性之研究,” 華梵大學機電工程研究所, 行政院國家科學委員會專題研究計畫成果報告, 2004.

2.Iwasaki, H., Sasaki, T., and Ishizuka, M., ”Cooling performance of Fins for Multi-chip Modules,” IEEE Transactions on Components, Packaging and Manufacturing Technology, Part A, Vol. 18, No. 3, pp. 592-595, 1995.

3.Naik, S., Probert, S. D., and Bryden, I. G., ”Heat Transfer Characteristics of Shrouded Longitudinal Ribs in Turbulent Forced Convection,” International Journal of Heat Fluid Flow, Vol. 20, No. 4 , pp. 374-384, 1999.

4.Saini, M., Webb, R. L., ”Heat Rejection Limits of Air Cooled Plane Fin Heat Sinks for Computer Cooling,” IEEE Transactions On Components And Packaging Technologies, Vol. 26, No. 1, pp. 71-79 2003.

5.Ishizuka, M., Yokono, Y., and Biswas, D., ”Experimental study on the performance of a compact heat sink for LSI packages,” Proceedings Institution of Mechanical Engineers, Part A, Vol. 214, No. 5, pp. 523-530, 2000.

6.Sata, Y., Iwasaki, H., and Ishizuka, M., ”Development of prediction technique for cooling performance of finned heat sink in uniform flow,” IEEE Transactions On Components, Packaging, And Manufacturing Technology-Part A, Vol. 20, No. 2, pp. 160-166, 1997.

7.Vollaro, A. D. L., Grignaffini, S. , Gugliermetti, F. , ”Optimum design of vertical rectangular fin arrays,” International Journal of Thermal Sciences, Vol. 38, No. 6, pp. 525-529, 1999.

8.Culham, J. R., and Muzychka, Y. S., ”Optimization of plate fin heat sinks using entropy generation minimization,” IEEE Transactions On Components And Packaging Technologies, Vol. 24, No. 2, pp. 159-165 2001.

9.Giri, A., Narasimham, G. S. V. L., Murthy, M. V. K., ”Combined natural convection heat and mass transfer from vertical fin arrays,” International Journal of Heat and Fluid Flow, Vol. 24, No. 1, pp. 100-113, 2003.

10.El-Sayed, S. A., Mohamed, S. M., Abdel-latif, A. A., Abouda, A. E., ”Experimental study of heat transfer and fluid flow in longitudinal rectangular-fin array located in different orientations in fluid flow,” Experimental Thermal and Fluid Science, Vol. 29, No. 8, pp. 113-128, 2004.

11.Fu, W. S., Chen, S. F., ”A numerical study of heat transfer of a porous block with the random porosity model in a channel flow, ”Heat and Mass Transfer, Vol. 38, No. 7-8, pp. 695-704, 2002.

12.Mohamed, M. M., ”Air cooling characteristics of a uniform square modules array for electronic device heat sink, ”Applied Thermal Engineering, Vol. 26, No.5-6, pp. 486-493, 2006.

13.Kobus, C. J., Oshio, T., ”Predicting the thermal performance characteristics of staggered vertical pin fin array heat sinks under combined mode radiation and mixed convection with impinging flow,” International Journal of Heat and Mass Transfer, Vol. 48, No.13, pp. 2684-2696, 2005.

14.Jonsson, H., Palm, B., ”Thermal and hydraulic behavior of fin and strip fin heat sinks under varying bypass conditions, ”IEEE Transactions on Components And Packaging Technologies, Vol. 23, No. 1, pp. 96-103 2002.

15.Josson, H., and Moshfegh, B., ”Modeling of the Thermal and Hydraulic Performance of Plate Fin, Strip Fin, and Pin Fin Heat Sinks-Influence of Flow Bypass, ”IEEE Transactions on Components and Packaging Technologies, Vol. 24, No. 2, pp. 142-149, 2001.

16.Sikka, K. K., Torrance, K. E., Scholler, C. U., and Salanova, P. I., ”Heat sinks with fluted and wavy plate fins in natural and low-velocity forced convection,” IEEE Transactions On Components And Packaging, Vol. 25, No. 2, pp. 283-292, 2002.

17.Shah, A., Sammakia, B. G., Srihari, H., and Ramakrishna, K., ”A numerical study of the thermal performance of an impingement heat sink-fin shape optimization,” IEEE Transactions On Components And Packaging Technologies, Vol. 27, No. 4, pp. 298-306, 2004.

18.Kim, W. N., Young Kim, S. Y., and Kang, B. H., ”CFD Simulation Of Thermal Dissipation From Fan-Added Plate Fin And Offset Strip Fin Heat Sinks,” Inter Society Conference on Thermal Phenomena, Vol. 2, pp. 213-217, 2004.

19.Yu, X., Feng, J., Feng, Q., Wang, Q., ”Development of a plate-pin fin heat sink and its performance comparisons with a plate fin heat sink,” Applied Thermal Engineering, Vol. 25, No. 2-3, pp. 173-182, 2005.

20.Akyol, U., Bilen, K., ”Heat transfer and thermal performance analysis of a surface with hollow rectangular fins,” Applied Thermal Engineering, Vol. 26, No. 2-3, pp. 209-216, 2006.

21.Fluent 6.1 User’s Guide, Fluent Inc., New Hampshire, USA, 2003.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔