跳到主要內容

臺灣博碩士論文加值系統

(44.220.251.236) 您好!臺灣時間:2024/10/11 05:11
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:李冠德
研究生(外文):Guan-De Lee
論文名稱:以微測試件之吸附電壓反算薄膜材料之楊氏模數與殘留應力
論文名稱(外文):Extracting the Young’s Modulus and Residual Stress of Thin Films through the Pull-in Voltage of Micro Test-key
指導教授:胡毓忠胡毓忠引用關係
指導教授(外文):Yuh-Chung Hu
學位類別:碩士
校院名稱:華梵大學
系所名稱:機電工程研究所
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2006
畢業學年度:94
語文別:中文
論文頁數:101
中文關鍵詞:吸附電壓機械性質楊氏模數殘留應力微機電系統
外文關鍵詞:pull-in voltagemechanical propertyYoung’s modulusresidual stressMEMS
相關次數:
  • 被引用被引用:0
  • 點閱點閱:286
  • 評分評分:
  • 下載下載:32
  • 收藏至我的研究室書目清單書目收藏:0
本研究旨在研發一套全電信號的薄膜材料之楊氏模數與殘留應力的檢測技術。先以尤拉樑(Euler’s beam)理論以及最小能量法(Minimum energy method)的方式,推導出具初始應力之微橋狀樑承受靜電負載下的吸附電壓之解析解,再以靜電結構之吸附電壓反算薄膜材料之楊氏模數與殘留應力。在實驗製程方面,本研究採用與CMOS製程相容的面型矽微加工技術,以鋁金屬作為測試結構材料,萃取出濺鍍鋁薄膜之楊氏模數與殘留應力,與文獻中的數據比較,楊氏模數的誤差在3%以內,殘留應力的誤差在5%以內。另針對數學模型中之假設撓曲函數,本文提出三個不同的假設撓曲函數並比較之。三個假設撓曲函數為:(1) 微結構之固有模態函數(natural mode);(2) 微結構之挫曲模態函數(buckling mode);(3) 餘弦函數(cosine function)。其中,以微結構之固有模態為假設撓曲函數所得之結果最為準確。因為樑的固有模態不僅滿足邊界條件,且是根據樑承受橫向力(transverse forces)所推導出來的,而靜電力屬橫向力,故以微結構之固有模態為假設撓曲函數,所得之楊氏模數與殘留應力結果最為準確。
This paper presents a novel and high-precision algorithm and method for extracting the Young’s modulus and residual stress of thin films through the pull-in voltage the micro test-key at wafer level. We derives a closed form solution for the pull-in voltages of the micro fixed-fixed beam subjected to electrostatic loads and initial stress. The closed form solution is derived based on the Euler’s beam theory and the minimum energy method. The accuracy and precision of the present closed form solution is verified through comparing with the experimentally measured data conducted in the published works. Then one can use the aforesaid closed form solution of the pull-in voltage to extracted the Young’s modulus and residual stress of the test structures. The accuracy and precision of the present method for extracting the Young’s modulus and residual stress is verified through comparing with the results conducted in the published works as well as the experiment conducted by the author. The error of the extracted Young’s modulus is below 3% compared to the experimentally measured data and the error of the residual stress is below 5%. Three common assumed deflection shape functions in deriving the closed form solution of pull-in voltage are also discussed in the present work. Those are the natural mode, the buckling mode, and the cosine function. It is shown that the extracted Young’s modulus and residual stress obtained by the natural mode is more accurate than the other two. The natural modes of beam are derived based on the beams subjected to transverse forces, which is similar to the situation of the beam subjected to the transverse electrostatic force. Thus, the natural mode is the best choice.
目錄
誌謝 I
摘要 III
Abstract V
目錄 VII
表錄 X
圖錄 XIII
符號說明 XVII
第1章. 緒論 1
1.1. 研究動機 1
1.2. 文獻回顧 2
1.2.1. 薄膜材料之楊氏模數萃取 3
1.2.2. 薄膜材料之殘留應力萃取 9
1.3. 研究目標 18
第2章. 靜電結構之吸附電壓的解析解 19
2.1. 微結構系統能量式 19
2.2. 吸附電壓之解析解 25
2.3. 理論驗證 28
第3章. 以微結構之吸附電壓反算薄膜材料之楊氏模數與殘留應力 36
3.1. 相關技術簡介(M-TEST) 36
3.2. Fast M-TEST 41
3.3. Fast M-TEST與M-TEST之比較 43
3.4. Fast M-TEST之驗證 44
3.4.1. (100)單晶矽 45
3.4.2. (110)單晶矽 46
3.4.3. 複晶矽(Poly silicon) 48
第4章. 實驗驗證 51
4.1. 測試結構的製程 51
4.2. 吸附電壓量測方法 60
4.2.1. 電容-電壓量測原理 60
4.2.2. 量測儀器之參數設定 60
4.2.3. 電容-電壓靈敏度分析 64
4.3. Fast M-TEST之實驗驗證 66
4.3.1. 實驗一 66
4.3.2. 實驗二 70
4.4. 厚度誤差造成的影響 74
第5章. 不同假設撓曲函數之比較 83
5.1. 假設撓曲函數 83
5.1.1. 固有模態函數(Natural Modes) 84
5.1.2. 挫曲模態函數(Buckling Mode) 84
5.1.3. 餘弦函數(Cosine Function) 85
5.2. 以不同假設撓曲函數萃取複晶矽之材料參數 85
5.3. 以不同假設撓曲函數萃取單晶矽之材料參數 87
5.3.1. (100)單晶矽 87
5.3.2. (110)單晶矽 88
5.4. 以不同假設撓曲函數萃取鋁薄膜之材料參數 90
第6章. 結論與未來展望 92
6.1. 結論 92
6.2. 未來展望 93
參考文獻 95
參考文獻
[1]K.E. Petersen and C.R. Guarnieri, “Young’s modulus measurements of thin films using micromechanics,” Journal of Applied Physic, 50, pp. 6761-6766, 1979.
[2]L.M. Zhang, D. Uttamchandani and B. Culshaw, “Measurement of Mechanical properties of silicon microresonators,” Sensors and Actuators A, 29, pp. 79-84, 1991.
[3]L. Kiesewetter, J.-M. Zhang, D. Houdeau and A. Steckenborn, “Determining of Young’s moduli of micromechanical thin films using the resonance method,”Sensors and Actuators A, 35, pp. 153-159, 1992.
[4]J.J. Vlassak and W.D. Nix, “A new bulge test technique for the determination of Young’s modulus and Poisson’s ratio of thin films,” Journal of Materials Research, 7, no. 12, pp. 3242-3249, 1992.
[5]K. Najafi and K. Suzuki, “A Novel Technique and Structure for the Measurement of Intrinsic Stress and Young's Modulus of Thin Films,” Proceeding of the IEEE MEMS, Salk Lake City, UT, Feb., 1989.
[6]X.-Q. Sun, Z. Li, X. Zheng and L. Lin, ”Study of fabrication process of a micro electrostatic switch and its application to a micromechanical V-F converter,” Sensors and Actuators A, 35, pp. 189-192, 1993.
[7]Q. Zou, Z. Li and L. Liu, “New methods for measuring mechanical properties of thin films in micromachining: beam pull-in voltage (Vpi) method and long beam deflection (LBD) method,” Sensors and Actuators A, 48, pp. 137-143 (1995).
[8]P. M. Osterberg and S. D. Senturia, “M-TEST: A test chip for MEMS material property measurement using electrostatically actuated test structures,” Journal of Microelectromechanical Systems, 6(2) (1997) 107–118.
[9]R. K. Gupta, “Electrostatic pull-in test structure design for in-situ mechanical property measurements of microelectromechanical system (MEMS),” Ph.D. thesis, MIT (1997).
[10]W. N. Sharpe, Jr., B. Yuan, and R. L. Edwards, “A new technique for measuring the mechanical properties of thin films,” Journal of Microelectromechanical Systems, 6, no. 3, pp. 193-199, 1997.
[11]S. Johansson, J.-A. Schweitz, L. Tenerz and J. Tiren, “Fracture testing of silicon microelements in situ in a scanning electron microscope,” Journal of Applied Physics, 66, pp. 4799-4803, 1988.
[12]C. Serre, P. Gorostiza, A. Perez-Rodriguez, F. Sanz and J.R. Morante, “Measurement of micromechanical properties of polysilicon microstructures with an atomic force microscope,” Sensors and Actuators A, 57, pp. 215-219, 1998.
[13]C. Serre, A. Perez-Rodriguez, J.R. Morante, P. Gorostiza and J. Esteve, “Determination of micromechanical properties of thin films by beambending measurements with an atomic force microscope,” Sensors and Actuators A, 74, pp.134-138, 1999.
[14]T. Chudoba, N. Schwarzera, F. Richtera and Beck, “Determination of mechanical film properties of a bilayer system due to elastic indentation measurements with a spherical,” Thin Solid Films, 377, pp. 366-372, 2000.
[15]L. Riester, P.J. Blau, E. Lara-Curzio and K. Breder, “Nanoindentation with a Knoop indenter,” Thin Solid Films, 377, pp. 635-639, 2000.
[16]H. Guckel, D.W. Burns, H.A.C. Tilmans, C.C.G. Visser, D. DeRoo, T.R. Christenson, P.J. Klomberg, J.J. Sniegowski, and D.H. Jones, “Processing conditions for polysilicon films with tensile strain for large aspect ratio microstructures,” Technical Digest of IEEE Solid-State Sensor and Actuator Workshop, June 6-9, 1988, pp. 51-56.
[17]H. Guckel, D.W. Burns, H.A.C. Tilmans, D. DeRoo, and C. Rutigliano, “Mechanical properties of fine grained polysilicon-the repeatability issue,” Technical Digest of IEEE Solid-State Sensor and Actuator Workshop, June 6-9, 1988, pp. 96-99.
[18]H. Guckel, D.W. Burns, C.C.G. Visser, H.A.C. Tilmans and D. DeRoo, “Fine grained polysilicon films with built-in tensile strain,” IEEE Transactions on Electron Devices, ED-35, 6, pp. 800-801, June, 1988.
[19]H. Guckel, D.W. Burns, C. Rutigliano, E. Lovell and B. Choi, “Diagnostic microstructures for the measurement of intrinsic strain in thin films,” Journal of Micromechanics and Microengineering, 2, pp. 86-95, 1992.
[20]W. Fang and J.A. Wickert, “Post-buckling of micromachined beams,” Journal of Micromechanics and Microengineering, 4, pp. 182-187, 1994.
[21]W. Fang and J.A. Wickert, “Comment on measuring thin-film stresses using bi-layer micromachined beams,” Journal of Micromechanics and Microengineering, 5, pp. 276-281, 1995.
[22]W. Fang and J.A. Wickert, “Determining mean and gradient residual stress in thin films using micromachined cantilevers,” Journal of Micromechanics and Microengineering, 6, pp. 301-309, 1996.
[23]J.A. Schweitz and F. Ericson, “Evaluation of mechanical materials properties by means of surface micromachined structures,” Sensors and Actuators A, 74, pp.126-133, 1999.
[24]J. Wylde and T. J. Hubbard, “Elastic properties and vibration of micro-machined structures subject to residual stress,” Proceedings of the 1999 IEEE Canadian conference on electrical and computer engineering, Shaw conference center, Edmonton, Alberta, Canada, May 9-12, 1674 (1999).
[25]Sayanu Pamidighantam, Robert Puers, Kris Baert and Harrie A C Tilmans, “Pull-in voltage analysis of electrostatically actuated beam structures with fixed–fixed and fixed–free end conditions,” Journal of Micromechanics and Microengineering, 12, pp. 458-464, 2002.
[26]C O’Mahony, M Hill, R Duane and A Mathewson, “Analysis of electromechanical boundary effects on the pull-in of micromachined fixed–fixed beams,” Journal of Micromechanics and Microengineering, 13, pp. S75-S80, 2003.
[27]W.H.Chang, “Analytic IC-metal-line capacitance formulas,” IEEE Trans. Microw. Theory Tech. 24 608–11, 1976
[28]N.V.D. Meijs and J.T. Fokkema, “VLSI circuit reconstruction from mask topology,” Integr. VLSI J. 2, pp.85–119, 1984
[29]R.E.D Bishop and D.C. Johnson, “The Mechanics of Vibration”, Cambridge at the university press, (1960) p.375–382.
[30]M.Chinmulgund, R.B.Inturi, J.A.Barnard, “Effect of Ar gas pressure on growth, structure, and mechanical properties of sputtered Ti, Al, TiAl, and Ti3Al films,” Thin Solid Films, 270, pp.260-263, 1995.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top