跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.85) 您好!臺灣時間:2025/01/21 15:52
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:王鎮城
研究生(外文):jhen-cheng wang
論文名稱:狀態補償反覆學習控制應用於壓電致動器循跡追蹤
論文名稱(外文):Trajectory Tracking of a Piezoelectric Actuator Using State Compensated Iterative Learning Control
指導教授:李福星李福星引用關係簡江儒
指導教授(外文):Fu-Shin LeeChiang-Ju Chien
學位類別:博士
校院名稱:華梵大學
系所名稱:機電工程研究所
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2006
畢業學年度:94
語文別:英文
論文頁數:200
中文關鍵詞:壓電致動器反覆學習控制
外文關鍵詞:pizoelectric actatoriterative learning control
相關次數:
  • 被引用被引用:4
  • 點閱點閱:307
  • 評分評分:
  • 下載下載:55
  • 收藏至我的研究室書目清單書目收藏:2
本論文主要為創新一個狀態補償反覆學習控制(SCILC)法則,應用於一個壓電致動器循跡追蹤控制系統,其間進行相關理論探討和控制器設計規劃,以期達到最佳循跡追蹤效能,研究過程並進行一系列該系統測試,以為創新理論與實作之驗證。本論文所提出SCILC控制器,具有二個主要特色:狀態補償和誤差濾波。狀態補償機制融入反覆學習控制(ILC)法則,為本研究針對非線性系統控制一項新穎的設計。狀態補償主要針對連續二次ILC學習週期之系統狀態變動先行補償,藉由預先補償系統狀態變動,輔助SCILC控制器精準地進行學習控制機能。同時,本研究將誤差濾波技巧融入ILC控制法則,其濾波功能可免除ILC反覆學習過程中雜訊累積,得以確保追蹤誤差穩定收斂至最小極限。
本研究首先介紹基本連續時域ILC控制法則和其收斂分析,其後提出一泛用型離散時域回授輔助反覆學習控制(FB-ILC)法則,並完成FB-ILC控制法則收斂分析之理論證明。由於SCILC控制法則可視為FB-ILC控制法則的一個特例,FB-ILC的收斂分析結果佐證SCILC控制法則收斂特性之理論基礎。
本研究進一步於頻域對ILC控制法則進行收斂分析,因此提出創新ILC收斂頻寬理論公式,並針對主要ILC濾波器進行深入探討。其後,本研究採用訊號分析技術Wigner-Ville distribution (WVD),對ILC系統追蹤誤差之頻譜特性進行分析探討。緣是,本研究提出一嶄新ILC濾波器設計法,運用追蹤誤差的WVD分析和ILC系統的收斂頻寬分析,得以設計適當ILC濾波器和ILC控制器而提升循跡追蹤效能。
綜言之,本研究根據基本理論基礎與創新方法設計SCILC控制器與相關ILC濾波器,並將SCILC控制器和傳統ILC控制器實作應用於壓電致動器循跡追蹤而進行性能比對。實驗結果顯示,在任採同一種濾波器條件下,SCILC控制器追蹤性能都顯著優於傳統ILC控制器。本研究對SCILC控制器進行一系列廣泛深入實作驗證,針對壓電致動器位移軌跡,調變動其設定軌跡頻率和振幅,後由SCILC控制器進行追蹤控制。實驗證明,SCILC控制器在任採一種濾波器情況下,追蹤各種不同頻率和振幅的軌跡,皆具有極佳且相似的追蹤結果。綜上結論,本論文確認所創新SCILC控制法則具有優異反覆學習控制性能,本論文對ILC理論研究與非線性系統應用都著有貢獻。
This dissertation presents a research on trajectory tracking of a piezoelectric actuator using a state compensated iterative learning control (SCILC) scheme. The SCILC scheme has two main features: a novel design of state compensation for iterative learning control (ILC), and an enhancement of ILC using error filtering. In the SCILC scheme, a state compensation is designed to compensate for the change in states from one iteration to the next. Due to the state compensation, the SCILC scheme can yield more precise tracking control in comparison to conventional ILC schemes. The adoption of error filtering in the SCILC scheme is intended to prevent noise accumulation in iterative learning and ensure long-term stability in executing the scheme. In this dissertation, a fundamental ILC theory is introduced and a general feedback assisted ILC (FB-ILC) scheme is presented. Convergence analysis of the FB-ILC scheme is uniquely performed, and thus convergency of the SCILC scheme is established accordingly. In-depth studies into ILC error filtering are undertaken. Convergence bandwidth of an ILC system is novelly addressed. Essential ILC filters are discussed extensively. Analysis of ILC tracking errors using the Wigner-Ville distribution (WVD) is introduced. A methodology for ILC filter design is proposed by utilizing the WVD and the convergence bandwidth analyses associated with an ILC system. SCILC controllers using essential filters are designed and applied to a tracking task with extensive tracking experiments on a piezoelectric actuator. Results of the extensive experiments confirm the efficacy and robustness of the innovative SCILC scheme in tracking control of the piezoelectric actuator.
Abstract
Table of Contents
List of Figures
Nomenclature
Chapter 1 Introduction
1.1 Motivation and Related Researches
1.2 Overview of Iterative Learning Control
1.3 Contributions of the Dissertation
1.4 Organization of the Dissertation
Chapter 2 Basic Iterative Learning Control
2.1 D-Type Iterative Learning Control
2.2 Convergence Analysis for Linear Systems
2.3 Convergence Analysis for Nonlinear Systems
2.4 Summary
Chapter 3 Feedback Assisted Iterative Learning Control
3.1 High-Order Feedback Assisted Iterative Learning Control
3.2 Problem Formulation
3.3 Convergence Analysis
3.4 First-Order Feedback Assisted Iterative Learning Control
3.5 State Compensated Iterative Learning Control
3.6 Summary
Chapter 4 Iterative Learning Control with Error Filtering
4.1 Convergence Bandwidth of ILC with Error Filtering
4.2 ILC with FIR Filtering
4.3 ILC with Wavelet Transform Filtering
4.4 ILC with B-Spline Network Filtering
4.5 Wigner-Ville Distribution of Tracking Errors
4.6 ILC Filter Design
4.7 Summary
Chapter 5 Tracking Experiments of a Piezoelectric Actuator Using Iterative Learning Control
5.1 Experimental Setup
5.2 Iterative Learning Controller Design
5.2.1 Design of Learning Operators
5.2.2 Wigner-Ville Distribution
5.2.3 FIR Filter Design
5.2.4 Wavelet Transform Filter Design
5.2.5 B-Spline Network Filter Design
5.3 Tracking Experiments Using ILC with FIR Filtering 5.4 Tracking Experiments Using ILC with Wavelet Transform Filtering
5.5 Tracking Experiments Using ILC with B-Spline Network Filtering
5.6 Summary
Chapter 6 Conclusions
References
Publications
[1]P. Ge and M. Jouaneh, “Tracking control of a piezoceramic actuator,” IEEE Transactions on Control Systems Technology, Vol. 4, pp. 209–216, 1996.
[2]J. Tzen, S. Jeng and W. Chieng, “Modeling of piezoelectric actuator for compensation and controller design,” Precision Engineering, Vol. 27, pp. 70–86, 2003.
[3]B. M. Chen, T. H. Lee, C. Hang, Y. Guo and S. Weerasooriya, “An H∞ almost disturbance decoupling robust controller design for a piezoelectric bimorph actuator with hysteresis,” IEEE Transactions on Control Systems Technology, Vol. 7, No. 2, pp. 160–174, 1999.
[4]S. Salapaka, A. Sebastian, J. P. Cleveland and M. V. Salapaka, “Design, identification and control of a fast nanopositioning device,” Proc. of 2002 American Control Conference, Vol. 3, pp. 1966–1971, 2002.
[5]C. L. Hwang and C. Jan, “A reinforcement discrete neuro-adaptive control for unknown piezoelectric actuator systems with dominant hysteresis,” IEEE Transactions on Neural networks, Vol. 14, No. 1, pp. 66–78, 2003.
[6]C. L. Hwang, Y. M. Chen and C. Jan, “Trajectory tracking of large-displacement piezoelectric actuators using a nonlinear observer-based variable structure control,” IEEE Transactions on Control Systems Technology, Vol. 13, No. 1, pp, 56–66, 2005.
[7]Z. Bien and J. X. Xu, Iterative Learning Control - Analysis, Design Integration and Application. Kluwer Academic Publishers, Norwell, MA, 1998.
[8]K. L. Moore, “Iterative learning control - an expository overview,” Applied and Computational Controls, Signal Processing, and Circuits, Vol. 1, pp. 151–214, 1999.
[9]Special Issue on Iterative Learning Control, International Journal of Control, Vol. 73, No. 10, 2000.
[10]K. Leang and S. Devasia, “Iterative feedforward compensation of hysteresis in piezo positioners,” Proc. of 2003 IEEE Conference on Decision and Control, Vol. 3, pp. 2626–2631, 2003.
[11]Y. C. Huang and C. H. Cheng, “Robust tracking control of a novel piezodriven monolithic flexure-hinge stage,” Proc. of 2004 IEEE Conference on Control Applications, Taipei, Taiwan, pp. 977–982, 2004.
[12]J. X. Xu, J. Xu and T. Lee, “Iterative learning control for a linear piezoelectric motor with a nonlinear unknown input deadzone,” Proc. of 2004 IEEE Conference on Control Applications, Taipei, Taiwan, pp. 1001–1006, 2004.
[13]C. J. Chien, F. S. Lee, J. C. Wang and P. J. Chen, “Application of iterative learning to tracking control of a piezoelectric system,” Proc. of 2004 IEEE Conference on Control Applications, Taipei, Taiwan, pp. 376–381, 2004.
[14]K. L. Moore, Iterative learning control for deterministic systems. Springer, New York, NY, 1993.
[15]J. X. Xu and Y. Tang, Linear and nonlinear iterative learning control, Springer, New York, NY, 2003.
[16]M. Uchiyama, “Formation of high speed motion pattern of mechanical arm by trial,” Transactions SICE (Society of Instrumentation and Control Engineers), Vol. 14, No. 6 , pp. 706–712, 1978.
[17]S. Arimoto, S. Kawamura and F. Miyazaki, “Bettering operation of robots by learning,” Journal of Robotic Systems, Vol. 1, No. 2, pp. 123–140, 1984.
[18]G. Casalino and G. Bartolini, “A learning procedure for the control of movements of robotic manipulators,” IASTED Symposium on Robotics and Automation, pp. 108–111, 1984.
[19]J. J. Craig, “Adaptive control of manipulators through repeated trials,” Proc. Of ACC, San Diego, CA, 1984.
[20]R. H. Middleton, G. C. Goodwin and R. W. Longman, “A method for improving the dynamic accuracy of a robot performing a repetitive task,” Department of Electrical Engineering Technical Report EE8546, University of Newcastle, Newcastle, Australia, 1985.
[21]E. G. Harokopos, “Learning and optimal control of industrial robots in repetitive motions,” Technical Paper No. MS86-387 of Robots 10 Conference, Society of Manufacturing Engineers, Chicago, IL, pp. 429–446, 1986.
[22]S. Arimoto, S. Kawamura and F. Miyazaki, “Iterative learning control for robot systems,” Proc. of IECON, Tokyo, Japan, 1984.
[23]S. Arimoto, S. Kawamura and F. Miyazaki, “Bettering operation of robots by learning,” Journal of Robotic Systems, Vol. 1, No. 2, pp. 123–140, 1984.
[24]S. Arimoto, “Mathematical theory of learning with applications to robot control,” Proc. of 4th Yale Workshop on Applications of Adaptive Systems, New Haven, Connecticut, pp. 379–388, 1985.
[25]S. Arimoto, S. Kawamura, F. Miyazaki and S. Tamakie, “Learning control theory for dynamic systems,” Proc. of 24th IEEE Conference on Decision and Control, Ft. Lauderdale, Florida, pp. 1375–1380, 1985.
[26]S. Arimoto, T. Naniwa and H. Suzuki, “Robustness of P-type learning control with a frgetting factor for robotic motions,” Proc. of 29th IEEE Conference on Decision and Control, Honolulu, Hawaii, pp. 2640–2645, 1990.
[27]S. S. Saab, “On the P-type learning control,” IEEE Transactions on Automatic Control, Vol. 39, No. 11, pp. 2298–2302, 1994.
[28]J. Hauser, “Learning control for a class of nonlinear systems,” Proc. of 26th IEEE Conference on Decision and Control, Los Angles, CA, pp. 859–860, 1987.
[29]G. Heinzinger and D. Fenwick and B. Paden and F. Miyazaki, “Robust learning control,” Proc. of 28th IEEE Conference on Decision and Control, Tempa, Florida, pp. 436–440, 1989.
[30]M. Sun, B. Huang, X. Zhang and Y. Chen, “Robust convergence of the D-type learning controller,” Proc. of Second Chinese World Congress on Intelligent Control and Intelligent Automation, Xi'an Jiaotong University Press, Xi'an, P.R. China, pp. 678–683, 1997.
[31]H. S. Lee and Z. Bien, “Robustness and convergence of a PD-type iterative learning controller,” Proc. of 2nd Asian Control Conference, Seoul, Korea, pp. 85–101, 1997.
[32]B. S. Zhang and J. R. Leigh, “Predictive time-sequence iterative learning control with application to a fermentation process,” Proc. of 2nd IEEE Conference on Control Applications, Vancouver, Canada, pp. 439–442, 1993.
[33]K. S. Lee and J. H. Lee, “Constrained model-based predictive control combined with iterative learning for batch or repetitive processes,” Proc. of 2nd Asian Control Conference, Seoul, Korea, pp. 85–101, 1997.
[34]J. W. Lee, H. S. Lee and Z. Bien, “Iterative learning control with feedback using Fourier series with application to robot trajectory tracking,” Robotica, Vol. 11, pp. 291–298, 1993.
[35]M. Q. Phan and J. N. Juang, “Designs of learning controllers based on an auto-regressive representation of a linear system,” AIAA Journal of Guidance, Control, and Dynamics, Vol. 19, No. 2, pp. 355–362, 1996.
[36]K. Moore, “An iterative learning control algorithm for systems with measurement noise,” Proc. of 38th IEEE Conference on Decision and Control, Vol. 1, pp. 270–275, 1999.
[37]Z. Bien and K. M. Huh, “High-order iterative learning control algorithm,” IEEE Proceedings, Part-D, Vol. 136, No. 3, pp. 105–112, 1989.
[38]Y. Chen, Z. Gong and C. Wen, “Analysis of a high-order iterative learning control algorithm for uncertain nonlinear systems with state delays,” Automatica, Vol. 34, No. 3, pp. 345–353, 1998.
[39]J. X. Xu, Y. Dote, X. Wang and B. Shun, “On the instability of iterative learning control due to sampling delay,” Proc. of 1995 IEEE IECON 21st International Conference on Industrial Electronics, Control, and Instrumentation, Orlando, FL, Vol. 1, pp. 150–151, 1995.
[40]C. J. Chien, “The sampled-data iterative learning control for nonlinear systems,” Proc. of 36th IEEE Conference on Decision and Control, San Diego, California, pp. 4306–4311, 1997.
[41]M. Togai and O. Yamano, “Analysis design of an optimal learning control scheme for industrial robots: a discrete system approach,” Proc. of 24th IEEE Conference on Decision and Control, Ft. Lauderdale, FL, pp. 1399–1404, 1985.
[42]X. J. Xu, “Analysis of iterative learning control for a class of nonlinear discrete-time systems,” Automatica, Vol. 33, No. 10, pp. 1905–1907, 1997.
[43]C. J. Chien, Y. C. Wang and C. C. Teng, “On the robustness of discrete iterative learning control system with initial state error,” Proc. of 2001 European Control Conference, Portugal, pp. 2464–2468, 2001.
[44]D. H. Owens, “Universal iterative learning control using adaptive high-gain feedback,” Int. J. of Adaptive Control and Signal Processing, Vol. 7, pp. 383–388, 1993.
[45]Y. Chen, C. Wen and M. Sun, “Discrete-time iterative learning control of uncertain nonlinear feedback systems,” Proc. of Second Chinese World Congress on Intelligent Control and Intelligent Automation, Xi'an Jiaotong University Press, Xi'an, P.R. China, pp. 1972–1977, 1997.
[46]X. Ren and W. Gao, “On the initial conditions in learning control,” Proc. of IEEE Int. Symposium on Industry Electronics, Xi'an, China, pp. 182–185, 1992.
[47]Y. Chen, C. Wen, J. X. Xu and M. Sun, “An Initial State Learning Method for Iterative Learning Control of Uncertain Time-varying Systems,” Proc. of 35th IEEE Conference on Decision and Control, Kobe, Japan, pp. 3996–4001, 1996.
[48]N. Amann, D. H. Owens and E. Rogers, “Non-minimum phase plants in iterative learning control,” Proc. of IEE Conference on Intelligent Systems Engineering, pp. 107–112, 1994.
[49]J. Z. Xia and C. H. Menq, “Precision tracking control of non-minimum phase systems with zero phase error,” International Journal of Control, Vol. 61, No. 4, pp. 791–807, 1995.
[50]N. Amann, D. H. Owens, E. Rogers and A. Wahl, “An approach to linear iterative learning control design,” International Journal of Adaptive Control and Signal Processing, Vol. 10, No. 6, pp. 767–781, 1996.
[51]J. H. Lee, K. S. Lee and W. C. Kim, “Model-based iterative learning control with a quadratic criterion for time-varying linear systems,” Automatica, Vol. 36, No. 5, pp. 641–657, 2000.
[52]L. Hideg and R. Judd, “Frequency domain analysis of learning systems,” Proc. of 27th IEEE Conference on Decision and Control, Austin, TX, pp. 586–591, 1988.
[53]Q. P. Hu, J. X. Xu and T. H. Lee, “Iterative leaning control design for smith predictor,” Systems and Control Letters, Vol. 44, pp. 201–210, 2001.
[54]H. Elci, R. Longman, M. Phan, J. Juang and R. Ugoletti, “Simple learning control made practical by zero-phase filtering: applications to robotics,” IEEE Transactions on Circuits and Systems I: Fundamental Theory and Applications, Vol. 49, No. 6, pp. 753–767, 2002.
[55]N. Amann, D. H. Owens and E. Rogers, “2D systems theory applied to learning control systems,” Proc. of 33rd IEEE Conference on Decision and Control, Lake Bruena, FL, pp. 985–986, 1994.
[56]M. French and E. Rogers, “Nonlinear iterative learning by an apaptive lyapunov technique,” International Journal of Control, Vol. 73, No. 10, pp. 840–850, 2000.
[57]C. Ham, Z. Qu and J. Kaloust, “Nonlinear learning control for a class of nonlinear systems based on Lyapunov’s direct method,” Proc. of American Control Conference, Seattle, Washington, pp. 3024–3028, 1995.
[58]J. X. Xu and Y. Tan, “A composite energy function based learning control approach for nonlinear systems with time-varying parametric uncertainties,” IEEE Transactions on Automatic Control, Vol. 47, No. 11, pp. 1940–1945, 2002.
[59]J. X. Xu and Z. H. Qu, “Robust iterative learning control for a class of nonlinear systems,” Automatica, Vol. 34, No. 8, pp. 983–988, 1998.
[60]T. Y. Kuc and J. S. Lee, “An adaptive learning control of uncertain robotic systems,” Proc. of 30th IEEE Conference on Decision and Control, Brighton, UK, pp. 1206–1211, 1991.
[61]P. Lucibello, “Robots repositioning by learning,” Proc. of 32nd IEEE Conference on Decision and Control, San Antonio, Texas, pp. 2660–2661, 1993.
[62]M. Norrlof, “An adaptive iterative learning control algorithm with experiments on an industrial robot,” IEEE Transactions on Robotics and Automation, Vol. 18, No. 2, pp. 245–251, 2002.
[63]J. X. Xu, Q. P. Hu, T. H. Lee and S. Yamamoto, “Iterative learning control with Smith time delay compensator for batch processes,” Journal of Process Control, Vol. 11, No. 3, pp. 321–328, 2001.
[64]J. Choi and H. Do, “A learning approach of wafer temperature control in a rapid thermal processing system,” IEEE Transactions on Semiconductor Manufacturing, Vol. 14, No. 1, pp. 1–10, 2001.
[65]M. R. Graham, R. A. de Callafon and L. Shrinkle, “An iterative learning controller for reduction of repeatable runout in hard disk drives,” 2006 American Control Conference, Minneapolis, Minnesota, June 14–16, 2006.
[66]G. Otten, T. De Vries, J. Van Amerongen, A. Rankers and E. Gaal, “Linear motor motion control using a learning feedforward controller,” IEEE/ASME Transactions on Mechatronics, Vol. 2, No. 3, pp. 179–187, 1997.
[67]K. K. Tan, T. H. Lee and H. X. Zhou, “Micro-positioning of linear-piezoelectric motors based on a learning nonlinear PID controller,” IEEE/ASME Transactions on Mechatronics, Vol. 6, No. 4, pp. 428–436, 2001.
[68]G. Heinzinger, D. Fenwick, B. Paden and F. Miyazaki, “Stability of learning control with disturbances and uncertain initial conditions,” IEEE Transactions on Automatic Control, Vol. 37, No. 1, pp. 110–114, 1992.
[69]J. X. Xu, X. W. Wang and L. T. Heng, “Analysis of continuous iterative learning control systems using current cycle feedback,” Proc. of 1995 American Control Conference, Vol.6, pp. 4221–4225, 1995.
[70]C. J. Chien and J. S. Liu, “A P-type iterative learning controller for robust output tracking of nonlinear time-varying systems,” International Journal of Control, Vol. 64, No. 2, pp. 319–334, 1996.
[71]C. J. Chien and C. L. Tai, “A DSP based sampled-data iterative learning control system for brushless DC motors,” Proc. of 2004 IEEE Conference on Control Applications, pp. 995–1000, 2004.
[72]Y. Chen, C. Wen and M. Sun, “A robust high-order P-type iterative learning controller using current iteration tracking error,” International Journal of Control, Vol. 68, No. 2, pp. 331–342, 1997.
[73]K. Moore and Y. Chen, “On the monotonic convergence of high order iterative learning update laws,” Proc. of 15th IFAC World Congress, Barcelona, Spain, 2002.
[74]C. J. Chien, “A discrete iterative learning control for a class of nonlinear time-varying systems,” IEEE Transactions on Automatic Control, Vol. 43, No. 5, pp. 748–752, 1998.
[75]C. J. Chien, “A discrete iterative learning control of nonlinear time-varying systems,” Proc. of 35th IEEE Conference on Decision and Control, Kobe, Japan, pp. 3056–3061, 1996.
[76]C. J. Chien, “High order discrete iterative learning control in feedback systems,” Journal of Control Systems and Technology, Vol. 4, No. 4, pp. 227–234, 1996.
[77]Y. Chen and C. Wen, Iterative learning control: convergence, robustness and applications. Springer, New York, NY, 1999.
[78]H. S. Lee and Z. Ben, “Study on robustness of iterative learning control with non-zero initial error,” International Journal of Control, Vol. 64, No. 3, pp. 345–359, 1996.
[79]F. S. Lee, C. J. Chien, J. C. Wang and J. J. Liu, “Application of a model-based iterative learning technique to tracking control of a piezoelectric system,” Special Issue on Precision Motion Control and Instrumentation, Asian Journal of Control, Vol. 7, No. 1, pp. 29–37, 2005.
[80]R. W. Longman, “Iterative learning control and repetitive control for engineering practice,” International Journal of Control, Vol. 73, No. 10, pp. 930–954, 2000.
[81]K. K. Tan, H. Dou and Y. Chen, “High precision linear motor control via relay-tuning and iterative learning based on zero-phase filtering,” IEEE Transactions on Control Systems Technology, Vol. 9, No. 2, pp. 244–253, 2001.
[82]D. Zheng and A. Alleyne, “Stability of a novel iterative learning control scheme with adaptive filtering,” Proc. of 2003 American Control Conference, Vol. 5, pp. 4512–4517, 2003.
[83]R. Longman, “Some perspectives on iterative learning control,” The First Workshop on Iterative Learning Control, Tampa, Florida, pp. 17–22, 1998.
[84]R. Longman, “Practical design of learning and repetitive control,” Workshop Tutorial on Learning Control Design and Applications, the 2004 IEEE Conference on Control Applications, Taipei, Taiwan, pp. 33–125, 2004.
[85]Y. Chen, K. Moore and V. Bahl, “Learning feedforward control using a dilated B-spline network: frequency domain analysis and design,” IEEE Transactions on Neural Networks, Vol. 15, No. 2, pp. 355–366, 2004.
[86]B. Zhang, D. Wang and Y. Ye, “Wavelet transform based frequency tuning ILC,” IEEE Transactions on System, Man, and Cybernetics-Part B, Vol. 35, No.1, pp. 107–114, 2005.
[87]J. Proakis and D. Manolakis, Digital signal processing: principles, algorithms, and applications, 3rd ed., Prentice Hall, Upper Saddle River, NJ, 1996.
[88]A. Ambardar, Analog and digital signal processing, 2nd ed., Brooks/Cole Pub. Co., Pacific Grove, CA, 1996.
[89]A. Oppenheim and R. Schafer, Discrete-time signal processing, 2nd ed., Prentice Hall, Upper Saddle River, NJ, 1999.
[90]R. M. Rao and A. S. Bopardikar, Wavelet transforms: introduction to theory and applications. Addison-Wesley, Reading, MA, 1998.
[91]P. P. Vaidyanathan, Multirate systems and filter banks. Prentice Hall, Englewood Cliffs, NJ, 1993.
[92]A. Mertins, Signal analysis: wavelets, filter banks, time-frequency transforms and applications. John Wiley & Sons, New York, NY, 1999.
[93]H. Prautzsch, W. Boehm and M. Paluszny, Bezier and B-spline techniques. Springer, New York, NY, 2002.
[94]J. Starrenburg, W. van Luenen, W. Oelen and J. Van Amerongen, “Learning feedforward controller for a mobile robot vehicle,” Control Engineering Practice, Vol. 14, No. 9, pp. 1221–1230, 1996.
[95]W. Velthuis, T. de Vries and J. Van Amerongen, “Learning feedforward control of a flexible beam,” Proc. of 1996 IEEE International Symposium on Intelligent Control, Dearborn, MI, pp. 104–108, 1996.
[96]W. Velthuis, T. De Vries and E. Gaal, “Experimental verification of the stability analysis of learning feed-forward control,” Proc. of 37th IEEE Conference Decision Control, Tampa, FL, pp. 1225–1229, 1998.
[97]T. De Vries, W. Velthuis and J. Van Amerongen, “Learning fedforward control: a survey and historical note,” Proc. of First IFAC Conference on Mechatronic Systems, Darmstadt, Germany, pp. 949–954, 2000.
[98]S. Qian and D. Chen, Joint time-frequency analysis: methods and applications. PTR Prentice Hall, Upper Saddle River, NJ, 1996.
[99]Y. Chen and K. Moore, “Frequency domain adaptive learning feedforward control,” Proc. of 2001 IEEE International Symposium on Computational Intelligence in Robotics and Automation, Alberta, Canada, pp. 396–401, 2001.
[100]I. Rotariu, R. Ellenbroek and M. Steinbuch, “Time-frequency analysis of a motion system with learning control,” Proc. of 2003 American Control Conference, Vol. 4, pp. 3650–3654, 2003.
[101]A. D. Poularikas, The handbook of formulas and tables for signal processing, the electrical engineering handbook series, CRC Press LLC, Boca Raton, FL, 1999.
[102]F. Hlawatsch and G. F. Boudreaux-Bartels, “Linear and quadratic time-frequency signal representations,” IEEE Signal Processing Magazine, Vol. 9, No. 2, pp. 21–67, 1992.
[103]L. Cohen, “Time-frequency distributions - a review,” Proc. of IEEE, Vol. 77, No. 7, pp. 941–981, 1989.
[104]I. Daubechies, Ten Lectures on Wavelets. Society for Industrial and Applied Mathematics, Philadelphia, PA, 1992.
[105]PosiCon: Position feedback control electronics for piezoactuators.
Piezomechanik GmbH. Available: http://piezomechanik.com.
[106]PCI-1200 User Manual: Multifunctional I/O Board for PCI Bus Computers. National Instruments Corp., Austin, TX, 1997.
[107]F. Auger, P. Flandrin, O. Lemoine and P. Goncalves, Time-frequency toolbox for Matlab: Tutorial. http://iut-saint-nazaire.univ-nantes.fr/~auger/tftb.html, 1999.
[108]Wavelet Toolbox - User’s Guide. The MathWorks, Inc., Natick, MA, 2002.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top