跳到主要內容

臺灣博碩士論文加值系統

(44.222.134.250) 您好!臺灣時間:2024/10/08 05:12
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:邱名妤
研究生(外文):Ming Yu-Chiu
論文名稱:資料探勘方法應用於圖書館藏推薦
論文名稱(外文):Data Mining Approach to the Library Recommendation
指導教授:廖宜君
指導教授(外文):Yi-Chun Liao
學位類別:碩士
校院名稱:玄奘大學
系所名稱:企業管理學系碩士班
學門:商業及管理學門
學類:企業管理學類
論文種類:學術論文
論文出版年:2006
畢業學年度:94
語文別:中文
論文頁數:74
中文關鍵詞:資料探勘關聯規則館藏推薦
外文關鍵詞:Data MiningAssociation RuleLibrary ecommendation
相關次數:
  • 被引用被引用:7
  • 點閱點閱:478
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:6
現代圖書館的館藏與日遽增,而同一主題的書也有相當多的版本,甚至有些館藏屬於電子書,讀者要找到自己有興趣的主題,同時又具有代表性的書籍並不容易,往往在輸入一關鍵字之後,查詢系統所提供的書籍相當多,讀者需要花很多時間瀏覽才能找到具代表性的書籍。其次,由於現代資訊發達,書籍琳瑯滿目,要如何找尋適合自己閱讀的書籍也是很多讀者苦苦尋找的方法。本研究以圖書館的借閱紀錄為基礎,運用資料探勘(Data Mining)技術來找出圖書館讀者的閱讀興趣,從這些探勘的結果中,可以探究讀者和讀者之間閱讀的相似性,接著了解書籍和書籍之間的關聯性,依照讀者的閱讀興趣推薦給擁有相似閱讀興趣讀者適合的館藏書籍。本研究主要利用關聯規則Apriori方法幫讀者找出和他擁有相似閱讀興趣的讀者,因為閱讀的興趣類似,所以推薦彼此借閱的書籍給同一族群的讀者有較高的參考價值。其次,瞭解存在關聯性的書籍之推薦度,將具有高推薦度之書籍推薦給同一族群的讀者,最後,對映到讀者的個人興趣產生推薦清單。本研究以玄奘大學的借閱記錄為研究對象,透過本研究希望能有效的利用圖書館的系統資源,提高圖書館系統的價值。
The storage of library is increasing and the books with the same theme have quite a lot of editions, including some e-books. Therefore, it is difficult for readers to find their own interesting theme and the representative booklists. Secondly, when one keyword is provided by readers, quite a lot of booklists are offered so that the readers must spend much time browsing through to find the representative booklists. Furthermore, because of current much and diverse information, the readers is suffering from looking for the suitable booklists for themselves. Based on borrowing records of the library system, this study tries to apply the data mining techniques to find out the interest of reading for the library readers. From the result excavated, the similarity of readers’ interest for reading and the association of the books will be obtained. By the similar reading interest, the booklists will be recommended. In our proposed approach, an association rule, Apriori algorithm, is first applied to find out the groups with the same reading interest. Secondly, the recommendation degree of the associated booklists will be computed and the booklists will be recommended to the same reading group by the higher degree. An experiment data in HCU (Hsuan Chuang University) library shows the improvement in effectiveness of the use of library resources.
第一章 緒論 1
第一節 研究動機 1
第二節 研究目的 3
第三節 研究流程 4
第二章 文獻探討 5
第一節 資料探勘 5
第二節 個人化服務 15
第三節 推薦系統介紹 20
第四節 國內外圖書館系統個人化之背景 24
第五節 國內關於圖書館資訊個人化系統相關研究 27
第三章 研究方法 29
第一節 資料的前置處理 31
第二節 建立讀者興趣資料庫 33
第三節 讀者興趣分群 36
第四節 探勘推薦書籍之關聯法則 39
第五節 回饋 44
第六節 推薦系統的流程步驟 46
第四章 系統實作 49
第一節 系統環境 49
第二節 前置資料處理 51
第三節 推薦系統建置流程 55
第四節 推薦系統精確度分析 63
第五章 結論及未來工作 67
第一節 結論 67
第二節 研究限制 68
第三節 未來研究方向 69
參考文獻 71
參考文獻

[1]卜小蝶(2002),”運用類神經網路與資料探勘技術於網路教學課程推薦之研究”,交通大學。
[2]吳安棋(2001),”利用資料探勘的技術及統計的方法增強圖書館的經營與服務”,交通大學。
[3]余明哲(2003),”圖書館個人化館藏推薦系統”,交通大學。
[4]邱永祥(2003),”運用類神經網路與資料探勘技術於網路教學課程推薦之研究”,朝陽科技大學。
[5]施毓琦(2002),”大學圖書館網站個人化服務之使用者需求研究”,台灣大學。
[6]孫冠華(1999),”圖書館新書推薦之個人化服務方法”,中山大學。
[7]陳建銘(2001),”類神經網路於Web Mining之應用”,台北科技大學。
[8]陳莉君(2003),”線上個人化參考文獻管理系統”,交通大學。
[9]陳揮明(2004),”數位圖書館上個人化檢索與推薦服務之設計與實作”,南華大學。
[10]黃智育(2002),”資料探勘於即時線上推薦系統之應用研究”,朝陽科技大學。
[11]曾憲雄、蔡秀滿、蘇東興、曾秋蓉、王慶堯著(2005),”資料探勘”,旗標出版社。
[12]楊雅雯(2001)。”個人化數位圖書資訊環境–以PIE@NCTU 為例”,交通大學。
[13]鄭玉玲(2003),”運用資料探勘技術實作數位圖書館上個人化之檢索與推薦服務-以南華大學為例”,南華大學。
[14]戴玉旻(2003),”圖書館借閱記錄探勘系統”,交通大學。
[15]Adriaans, P. and Zantinge, D., “Data Mining, Addison Wesley Longman, ” 1996.
[16]Agrawal R.,Imielinski T., Swami A., "Mining Associations between Sets of Items in Large Databases," Proceedings of the ACM-SIGMOD 1993 International Conference on Management of Data, Washington D.C., May 1993, pp.207-216.
[17]Agrawal R. and Srikant R., “Fast Algorithms for Mining Association Rules,” Proceedings of the 20th International Conference on Very Large Databases, Santiago. Chile, September 1994, pp.487-499.
[18]Balabanovic Marko and Shoham Yoav. Fab: Content-Based, Collaborative Recommendation. Communications of ACM, 40(3), 66-72, 1997.
[19] Caglayan, A., Harrison, C., & Harrison, C. G. (1997). Agent sourcebook: A complete guide to desktop, internet, and intranet agents. New York: John Wiley & Sons.
[20] Calhoun, K., & Koltay, Z. Library Gateway focus groups report,January 1999.
[21]Chen M. S., Han J., and Yu P. S., “Data Mining: An Overview from a Database Perspective,” IEEE Transactions on Knowledge and Data Engineering, 1996, pp.866-883.
[22]Cheung D., Han J., V. T. Ng, Fu A. W. an Fu Y., “A Fast Distributed Algorithm for Mining Association Rules”, Proceedings of 1996 International Conference on Parallel and Distributed Information Systems, Miami Beach, Florida, USA, December. 1996.
[23]Claypool Mark and Gokhale Anuja. Combining Content-based and Collaborative Filters in an Online Newspaper. Workshop on Recommender System: Algorithms and Evaluation, 1999.
[24]Dean, R. (2000, June). Personalizing your web site. Retrieved April 2, 2003.
[25]Delgado, Joaquin and Ishii, Naohiro. Memory-Based Weighted-Majority Prediction for Recommender Systems. Workshop on Recommender System: Algorithms and Evaluation, 1999.
[26] Fayyad, U.M., “Data Mining and knowledge Discovery: Making Sense Out of data,” IEEE Expert, Volume 11, Issue 5, pp. 20-25, 1996.
[27]Ferranti, M. (2000, June). Personalization is key at Amazon.com. Retrieved June 4,2002.
[28]Goldberg D., Nichols D., Oki B. M., and Terry D.. Using collaborative filtering to weave an information tapestry. Communications of ACM, 35(12), 61-70, 1992.
[29]Han, Jiawei and Micheline Kamber , “Data Mining :Concepts and Techniques, ”John Wiley & Son,2001.
[30]Han J., “Data Mining Techniques,” ACM-Sigmod Conference Tutorial, June 1996.
[31]James Rucker and Marcos J. Polanco. Siteseer: Personalized Navigation for the Web. Communications of ACM, 40(3), 73-75, 1997.
[32]Kim, Sung-Min, Jong-Dal Kim, Jeong-Hee Hong, Do-Won Nam,Dong-Ha Lee,Jeon-Young Lee , “A System for Association Rule Finding from an Internet Portal Site,”2000.
[33]Kleissner, C., “Data mining for the enterprise,” In Proceedings of the Thirty-First Hawaii International Conference on, Volume 7, pp. 295-304, 1998.
[34]Konstan Joseph A., Bradley N. Miller, David Maltz, Jonathan L. Herlocker, Lee R.Gordon, and John Riedl. GroupLens: Applying Collaborative Filtering to Usenet News. Communications of the ACM, 40(3), 77-87, 1997.
[35]Krulwich Bruce and Burkey Chad. The InfoFinder agent: Learning user interests through heuristic phrase extraction. IEEE Intelligent Systems Journal (Expert), vol.12, no. 5, pp. 22-27, 1997.
[36]Lang K. NewsWeeder: Learning to filter netnews. In Proceedings of the Twelfth International Conference on Machine Learning, pp. 331--339 San Francisco, CA.Morgan Kaufman, 1995.
[37]Michael, J.A. and Linoff, G., “Data Mining Technique: for Marketing, Sales and Customer Support,” Wiley Computer Publishing, New York, 1997.
[38]Nichols. David M. Implicit Rating and Filtering. Proceedings of the 5th Workshop on Filtering and Collaborative Filtering, 1997.
[39]Ochs, N. V.(1999)Personalization and customization:where are they now?, available at http://msdn.microsoft.com/workshop/
[40]O'Connor Mark and Herlocker Jon.,Clustering Items for Collaborative Filtering.Workshop on Recommender System: Algorithms and Evaluation, 1999.
[41]Roh, Oh, Han,(2003),”The coolaborative filtering recommendation based on SOM cluster-indexing CBR”,Expert Systems with Applications。
[42] Surprenant, C. F., & Solomon, M. R. (1987). Predictability and personalization in the service encounter. Journal of Marketing, 51(2), 86-89.
[43] Ward Hanson, (2000), Principles of Internet Marketing, South-Western College Publishing, Cincinnati, OH。
[44]Yang,Pan,Xu(2004), “A PERSONALIZED PRODUCTS SELECTION ASSISTANCE BASED ON E-COMMERCE MACHINE LEARNING”, Proceedings of the Third international Conference on Machine Learning and Cybemetics。
[45] http://my.lib.ncsu.edu/
[46] https://www.lib.washington.edu/resource/login.asp
[47] https://www.library.vcu.edu/mylibrary/
[48] http://library.msstate.edu/mylibrary/login.asp
[49] http://medstat.med.utah.edu/
[50] http://library.med.nyu.edu/
[51] http://mylibrary.e-lib.nctu.edu.tw/
[52] http://210.60.55.236/
[53] http://163.23.5.25:8080/Pie_dyuLib/
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top