參考文獻
[1]卜小蝶(2002),”運用類神經網路與資料探勘技術於網路教學課程推薦之研究”,交通大學。
[2]吳安棋(2001),”利用資料探勘的技術及統計的方法增強圖書館的經營與服務”,交通大學。
[3]余明哲(2003),”圖書館個人化館藏推薦系統”,交通大學。[4]邱永祥(2003),”運用類神經網路與資料探勘技術於網路教學課程推薦之研究”,朝陽科技大學。[5]施毓琦(2002),”大學圖書館網站個人化服務之使用者需求研究”,台灣大學。[6]孫冠華(1999),”圖書館新書推薦之個人化服務方法”,中山大學。[7]陳建銘(2001),”類神經網路於Web Mining之應用”,台北科技大學。[8]陳莉君(2003),”線上個人化參考文獻管理系統”,交通大學。
[9]陳揮明(2004),”數位圖書館上個人化檢索與推薦服務之設計與實作”,南華大學。[10]黃智育(2002),”資料探勘於即時線上推薦系統之應用研究”,朝陽科技大學。[11]曾憲雄、蔡秀滿、蘇東興、曾秋蓉、王慶堯著(2005),”資料探勘”,旗標出版社。
[12]楊雅雯(2001)。”個人化數位圖書資訊環境–以PIE@NCTU 為例”,交通大學。[13]鄭玉玲(2003),”運用資料探勘技術實作數位圖書館上個人化之檢索與推薦服務-以南華大學為例”,南華大學。[14]戴玉旻(2003),”圖書館借閱記錄探勘系統”,交通大學。[15]Adriaans, P. and Zantinge, D., “Data Mining, Addison Wesley Longman, ” 1996.
[16]Agrawal R.,Imielinski T., Swami A., "Mining Associations between Sets of Items in Large Databases," Proceedings of the ACM-SIGMOD 1993 International Conference on Management of Data, Washington D.C., May 1993, pp.207-216.
[17]Agrawal R. and Srikant R., “Fast Algorithms for Mining Association Rules,” Proceedings of the 20th International Conference on Very Large Databases, Santiago. Chile, September 1994, pp.487-499.
[18]Balabanovic Marko and Shoham Yoav. Fab: Content-Based, Collaborative Recommendation. Communications of ACM, 40(3), 66-72, 1997.
[19] Caglayan, A., Harrison, C., & Harrison, C. G. (1997). Agent sourcebook: A complete guide to desktop, internet, and intranet agents. New York: John Wiley & Sons.
[20] Calhoun, K., & Koltay, Z. Library Gateway focus groups report,January 1999.
[21]Chen M. S., Han J., and Yu P. S., “Data Mining: An Overview from a Database Perspective,” IEEE Transactions on Knowledge and Data Engineering, 1996, pp.866-883.
[22]Cheung D., Han J., V. T. Ng, Fu A. W. an Fu Y., “A Fast Distributed Algorithm for Mining Association Rules”, Proceedings of 1996 International Conference on Parallel and Distributed Information Systems, Miami Beach, Florida, USA, December. 1996.
[23]Claypool Mark and Gokhale Anuja. Combining Content-based and Collaborative Filters in an Online Newspaper. Workshop on Recommender System: Algorithms and Evaluation, 1999.
[24]Dean, R. (2000, June). Personalizing your web site. Retrieved April 2, 2003.
[25]Delgado, Joaquin and Ishii, Naohiro. Memory-Based Weighted-Majority Prediction for Recommender Systems. Workshop on Recommender System: Algorithms and Evaluation, 1999.
[26] Fayyad, U.M., “Data Mining and knowledge Discovery: Making Sense Out of data,” IEEE Expert, Volume 11, Issue 5, pp. 20-25, 1996.
[27]Ferranti, M. (2000, June). Personalization is key at Amazon.com. Retrieved June 4,2002.
[28]Goldberg D., Nichols D., Oki B. M., and Terry D.. Using collaborative filtering to weave an information tapestry. Communications of ACM, 35(12), 61-70, 1992.
[29]Han, Jiawei and Micheline Kamber , “Data Mining :Concepts and Techniques, ”John Wiley & Son,2001.
[30]Han J., “Data Mining Techniques,” ACM-Sigmod Conference Tutorial, June 1996.
[31]James Rucker and Marcos J. Polanco. Siteseer: Personalized Navigation for the Web. Communications of ACM, 40(3), 73-75, 1997.
[32]Kim, Sung-Min, Jong-Dal Kim, Jeong-Hee Hong, Do-Won Nam,Dong-Ha Lee,Jeon-Young Lee , “A System for Association Rule Finding from an Internet Portal Site,”2000.
[33]Kleissner, C., “Data mining for the enterprise,” In Proceedings of the Thirty-First Hawaii International Conference on, Volume 7, pp. 295-304, 1998.
[34]Konstan Joseph A., Bradley N. Miller, David Maltz, Jonathan L. Herlocker, Lee R.Gordon, and John Riedl. GroupLens: Applying Collaborative Filtering to Usenet News. Communications of the ACM, 40(3), 77-87, 1997.
[35]Krulwich Bruce and Burkey Chad. The InfoFinder agent: Learning user interests through heuristic phrase extraction. IEEE Intelligent Systems Journal (Expert), vol.12, no. 5, pp. 22-27, 1997.
[36]Lang K. NewsWeeder: Learning to filter netnews. In Proceedings of the Twelfth International Conference on Machine Learning, pp. 331--339 San Francisco, CA.Morgan Kaufman, 1995.
[37]Michael, J.A. and Linoff, G., “Data Mining Technique: for Marketing, Sales and Customer Support,” Wiley Computer Publishing, New York, 1997.
[38]Nichols. David M. Implicit Rating and Filtering. Proceedings of the 5th Workshop on Filtering and Collaborative Filtering, 1997.
[39]Ochs, N. V.(1999)Personalization and customization:where are they now?, available at http://msdn.microsoft.com/workshop/
[40]O'Connor Mark and Herlocker Jon.,Clustering Items for Collaborative Filtering.Workshop on Recommender System: Algorithms and Evaluation, 1999.
[41]Roh, Oh, Han,(2003),”The coolaborative filtering recommendation based on SOM cluster-indexing CBR”,Expert Systems with Applications。
[42] Surprenant, C. F., & Solomon, M. R. (1987). Predictability and personalization in the service encounter. Journal of Marketing, 51(2), 86-89.
[43] Ward Hanson, (2000), Principles of Internet Marketing, South-Western College Publishing, Cincinnati, OH。
[44]Yang,Pan,Xu(2004), “A PERSONALIZED PRODUCTS SELECTION ASSISTANCE BASED ON E-COMMERCE MACHINE LEARNING”, Proceedings of the Third international Conference on Machine Learning and Cybemetics。
[45] http://my.lib.ncsu.edu/
[46] https://www.lib.washington.edu/resource/login.asp
[47] https://www.library.vcu.edu/mylibrary/
[48] http://library.msstate.edu/mylibrary/login.asp
[49] http://medstat.med.utah.edu/
[50] http://library.med.nyu.edu/
[51] http://mylibrary.e-lib.nctu.edu.tw/
[52] http://210.60.55.236/
[53] http://163.23.5.25:8080/Pie_dyuLib/