跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.82) 您好!臺灣時間:2024/12/14 09:06
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:蕭自智
研究生(外文):Tzu-Chih Hsiao
論文名稱:第二型環氧化酶選擇性抑制劑Etodolac合併5-FU誘導肝癌細胞凋亡之給藥方式探討
論文名稱(外文):Schedule-dependent Effect and Apoptotic Potential of a Cyclooxygenase-2 Selective Inhibitor Etodolac plus 5-fluorouracil-induced Cytotoxicity in Human Liver Tumor Cells
指導教授:彭耀寰彭耀寰引用關係
指導教授(外文):Robert Y. Peng
學位類別:碩士
校院名稱:弘光科技大學
系所名稱:生物科技研究所
學門:生命科學學門
學類:生物科技學類
論文種類:學術論文
論文出版年:2006
畢業學年度:94
語文別:英文
論文頁數:49
中文關鍵詞:非類固醇抗發炎藥第二型環氧化酶選擇性第二型環氧化酶抑制劑化學療法預防方法複方療法節拍式化學療法細胞訊息細胞凋亡結腸息肉瘤東洋生物製藥20%致死濃度血管內皮細胞成長因子流式細胞分析儀
外文關鍵詞:NSAIDCyclooxygenase-2Selective COX-2 InhibitorChemotherapy preventationCombination therapyMetronomic chemotherapyCell signalsApoptosisFamilial adenomatous polyposisTTY BiopharmIC20VEGFFlow cytometry
相關次數:
  • 被引用被引用:0
  • 點閱點閱:376
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:1
前言及目的:近來研究顯示第二型環氧化酶(英文全名, COX-2)在人類細胞的癌化過程中扮演相當重要的角色,COX-2與癌症之細胞生長及腫瘤形成有關。此外,我們了解到複方療法的評估在藥物學上是一個相當重要的問題,特別應用在癌症的化學治療上。大部份的癌症化學治療,會運用一或兩種以上的化學治療劑,目的在減少抗藥性及副作用並且提高療效。本研究的目的,在探討利用其第二型環氧化酶選擇性抑制劑Etodolac來抑制肝癌細胞株Hep G2及HA22T,而且可配合抗癌化學藥物5-FU的使用,以提高療效,推論此作用可能是經由加強誘導細胞凋亡所達成。我們考慮藥物的交互作用,以合併給藥及接續給藥的不同方式,來探討Etodolac合併5-FU,對肝癌細胞株Hep G2及HA22T的細胞生長抑制情形。
材料與方法:本實驗使用肝癌細胞株HepG2及HA22T及正常細胞株KEL FIB來進行Etodolac, 5-FU及Etodolac合併5-FU的複方療法實驗,將藥物分別加入細胞株中作用48小時,分別以MTT (3-(4,5– dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide)細胞毒性試驗法及流式細胞分析儀(flow cytometry)來分析細胞生長的抑制情形及細胞凋亡的現象。
實驗結果:Etodolac或5-FU,對肝癌細胞株HepG2及HA22T及正常細胞株KEL FIB有細胞生長抑制作用,而且呈劑量及時間依存性關係。另外在流式細胞分析儀的分析中,發現Etodolac及5-FU可引發肝癌細胞株HepG2及HA22T之細胞凋亡,也發現Etodolac在與5-FU的合併給藥中會誘導細胞凋亡的增加,而且在兩藥合併给藥的細胞凋亡分析中,同時給藥法會優於接續給藥的方法。
結論:第二型環氧化酶選擇性抑制劑Etodolac在5-FU毒殺肝癌細胞的化學治療上扮演輔助的功效,在這些研究中,Etodolac合併5-FU的細胞凋亡現象以合併給藥的方法效果最為顯著,這些發現提供一個臨床前治療的試驗參考,可提供在5-FU對於肝癌化學治療上扮演複方療法的選擇。
Introduction and purpose : Recent studies have demonstrated that cyclooxygenase-2 (COX-2) plays a crucial role in tumorigenesis, COX-2 is usually cited to be involved in tumorigenesis of cancer. As well known to all, the evaluation of synergistic effects is one of the most issue in pharmacological studies. Especially, in cancer therapy, most chemotherapeutic agents are administered with a single or two other drugs with the aim to reduce the drug resistance, side effects and to increase the tumor suppresive rate. The aim of this study was to investigate whether the selective COX-2 inhibitors (e.x., etodolac) exert anti-proliferative effect in hepatocellular cancer cell lines Hep G2 and HA22T and may be used in combination with the conventional chemotherapeutic drugs 5-FU for the treatment of hepatocellular cancer cell lines, the latter effect is possibly mediated via enhancement of apoptosis. Thus we investigated the interactive effects of a selective COX-2 inhibitor, etodolac, in combination with 5-FU in hepatocellular cancer cell lines, in simultaneous or sequential administration schedules.
Materials and Methods : Hepatocellular cancer cell lines of Hep G2, HA22T and KEL FIB cell lines were cultured. The selective COX-2 inhibitor etodolac, 5-FU, or etodolac combined with 5-FU were added to the cultures and co-cultured for 48 hours respectively. Cell proliferation and apoptosis rate were observed with MTT assay and flow cytometry.
Results : Both etodolac and 5-FU inhibited growth of hepatocellular cancer cell lines and KEL FIB cell line in a dose-dependent and time-dependent manners. The apoptotic activity induced by etodolac in combination with 5-FU was more effective than etodolac or 5-FU alone as evidenced by the cell death of hepatocellular cancer cell lines. Furthermore, the apoptotic rate induced by etodolac in combination with 5-FU was significantly increased compared to that by sequential exposure to etodolac then to 5-FU or 5-FU then followed by etodolac.
Conclusion : Etodolac, a selective COX-2 inhibitor can be used as a subsidiary drug in 5-FU chemotherapy for treating hepatocellular cancer cell lines. In our study, we have demonstrated that the cytotoxic effect of etodolac, based on the induction of apoptosis and inhibition of proliferation and differention, in combination with 5-FU was schedule-dependent, which is actually favoring a simultaneous administration. These findings provide a preclinic experiment basis for a combinatorial therapy using etodolac and 5-FU in treatment of human hepatocellular carcinoma.
Contents
Table of Abbreviations.....................................1
KeyWords...................................................2
Chapter 1、Abstract (摘要).................................3
1.1、Chinese Abstract (中文摘要)...........................3
1.2、English Abstract (英文摘要)…..............................................................4
Chapter 2、Introduction (前言)...............................................................................6
2.1、Hepatocellular Carcinoma (HCC)………………………...................6
2.2、Chemotherapy Preventation of Hepatocellular Carcinoma..............6
2.3、5-FU (附圖一) and 5’DFUR/Capecitabine………………..…………...…..7
2.4、Cyclooxygenases-2 (COX-2).......................................................7
2.5、Preferential COX-2 Selective Inhibitor, Etodolac..........................8
2.6、Cell Signals and Apoptosis....................................................................10
Chapter 3、Background of The Study (研究背景)..................................................16
Chapter 4、Materials and Methods (材料與方法)..................................................18
4.1、Cell Lines and Culture Methods............................................................18
4.2、Drugs...................................................................................................18
4.3、MTT Assay...........................................................................................18
4.4、DNA Fragmentation and Trypan Blue Exclusion Assay for Cell Death ..19
4.5、Annexin V assay for Relocated Phosphatidylserine...............................20
Chapter 5、Results (結果).....................................................................................22
5.1、Dose and Time-dependent Inhibitory Effects on Growth Following
Treatment with 5-FU or Etodolac…………………………………............22
5.2、Dose Responsive Interaction between Etodolac and 5-FU.......................22
5.3、Dose-dependent Induction of DNA Fragmentation by TUNNEL Assay....22
5.4、Induction of Apoptosis by Etodolac in Combination with 5-FU
Administered Simultaneously or Sequentially by Annexin-V Assay.........23
Chapter 6、Discussion (討論)..............................................................................26
Chapter7、Conclusion (結論)…………..………………………………………..……26
Chapter 8、Reference (文獻)................................................................................27
Figures.................................................................................................................36
附件一…………………………………………………………………………..…….…48
附件二…………………………………………………………………………...………49
1. Akriviadis, E.A., Llovet, J.M,, Efremidis, S.C., et al. (1998) Hepatocellular carcinoma. Br J Surg. 85: 1319–1331.
2. Akutsu, M., Furukawa, K., Tsunoda, S., Izumi, T.,Ohmine, K., Kano, Y. (2002) Schedule-dependent synergism and antagonism between metotrexate and cytarabine against human leukemia cell lines in vitro. Leukemia 16: 1808-1817.
3.Becker, W. M., Kleinsmith L. J., Hardin J. The World of the Cell: 5th edition, chapter10 Signal Transduction Mechanism: II. Messengers and Recepter: 282-285.
4. Berenbaum, M.C. (1985) The expected effect of a combination of agents: the general solution. J. Theor. Biol. 114: 413-431.
5. Bombardier, C., Laine, L., Reicin, A., Shapiro, D., Burgos-Vargas, R., Davis, B., Day, R., Ferraz, M.B., Hawkey, C.J., Hochberg, M.C., Kvien, T.K. and Schnitzer, T.J. (2000) Comparison of upper gastrointestinal toxicity of refecoxib and naproxen in patients with rheumatoid arthritis. VIGOR Study Group. N Engl J Med. 34: 1520-1528.
6. Bosch, F.X. (1997) Global epidemiology of hepatocellular carcinoma. In: Okuda, K, Tabor, E, eds. Liver Cancer. New York: Churchill Livingstone, 13-28.
7. Cao, D. and Pizzorno, G. (2004) Uridine phosphorylase an important enzyme in pyrimidine metabolism and fluoropyrimidine activation. Drug of today 40 (5): 431-443.
8. Chen, W.S., Wei, S.J., Liu, J.M., Hsiao, M., Lin, J.K. and Yang, W.K. (2001) Tumor invasiveness and liver metastasis of colon cancer cells correlated with cyclooxygenase-2 (COX-2) expression and inhibited by a COX-2-selective inhibitor, Etodolac. Int J Cancer 91: 894-899.
9. Chen, W.S.,Liu, J.H., Liu, J.M. and Lin, J.K. (2004) Sequence-dependent effect of a cyclooxygenase-2 inhibitor on topoisomerase I inhibitor and 5-fluorouracil-induced
cytotoxicity of colon cancer cells. Anti-Cancer Drugs, 15: 287-294.
10. Cheng, J., Imanishi, H., Amuro, Y. and Hada, T. (2002) NS-398, a selective cyclooxygenase 2 inhibitor, inhibited cell growth and induced cell cycle arrest in human
hepatocellular carcinoma cell lines. Int J Cancer, 99: 755-61.
11. Cheng, J., Imanishi, H., Liu, W., Nakamura, H., Morisaki, T., Higashino, K. and Hada, T. (2004) Involvement of cell cycle regulatory proteins and MAP kinase signaling pathway in growth inhibition and cell cycle arrest by a selective cyclooxygenase 2 inhibitor, etodolac, in human hepatocellular carcinoma cell lines. Cancer Sci. 95: 666-673.
12. Chu, C.Y., Chuang, L.C., Tseng, J. (2002) Roles of fas and fas-ligand during interferon-γ-induced apoptosis in human SKW6.4 lymphoma cells. Int. J. Immunother. XVIII (1): 1-11.
13. Chu, C.Y., Liu, T., Tseng, H.J. (1998) Induction of apoptosis in plasmacytoma cells by a cytotoxic factor secreted by P388D1 macrophage-like cell line. Int. J. Immunother. 14: 69.
14. Crofford, L. J., Wilder, R. L., Ristimaki, A. P., Sano, H., Remmers, E. F., Epps, H. R., and Hla, T. (1994) Cyclooxygenase-1 and -2 expression in rheumatoid synovial tissues: effects of interleukin-1β, phorbol ester, and corticosteroids. J. Clin. Invest. 93: 1095-1101.
15. Dewitt, D. L. and Smith, W. L. (1988) Primary structure of prostaglandin G/H synthase from sheep vesicular gland determined from the complementary DNA sequence. Proc. Natl. Acad. Sci. USA, 85: 1412-1416.
16. Eberhart, C.E., DuBois, R.N. (1995) Eicosanoids and the gastrointestinal tract. Gastroenterology, 109: 285-301.
17. EI-Serag, H.B., Davila, J.A., Petersen, N.J., McGlynn, K.A. (2003) The continuing increase in the incidence of hepatocellular carcinoma in the United States: an update.
Annals of Internal Medicine, 139: 817-23.
18. El-Serag, H.B., Mason, A.C. (1999) Rising incidence of hepatocellular carcinoma in the United States. N Engl J Med. 340: 745–750.
19. El-Serag, H.B., Mason, A.C. (2000) Risk factors for the rising rates of primary liver cancer in the United States. Arch Intern Med. 160: 3227–3230.
20. Elder, D.J.E., Halton, D.E., Hague, A. and Paraskeva, C. (1997) Induction of apoptotic cell death in human colorectal carcinoma cell lines by a COX-2 selective nonsteroidal anti-inflammatory drug: independence from COX-2 protein expression. Clin Cancer Res. 3: 1679-83.
21. Fosslien, E. (2000) Biochemistry of cyclooxygenase-2 inhibitors and molecular pathology of COX-2 in neoplasia. Crit Rev Clin Lab Sci. 37: 431-502.
22. Friedman, M.A. (1983) Primary hepatocellular cancer-present results and future prospects. Int J Radiat Oncol Biol Phys. 9: 1841–1850.
23. Funk, C. D., Funk, L. B., Kennedy, M. E., Pong, A. S. and Fitzgerald, G. A. (1991) Human platelet/erythroleukemia cell prostaglandin G/H synthetase: cDNA cloning, expression, and gene chromosomal assignment. FASEB J. 5: 2304-2312.
24. Gately, S. & Kerbel, R. (2003) Therapeutic potential of selective cyclooxygenase-2 inhibitors in the management of tumor angiogenesis. Prog. Exp. Tumor Res. 37: 179-192.
25. Giardiello, F.M., Hamilton, S.R. and Krush, A.J., Pianadosi, S.,Hylind, L.M., Celano, P., Booker, S.V., Robinson, C.R. and Offerhaus, G.J.A. (1993) Treatment of colonic and rectal adenomas with sulindac in familial adenomatous polyposis. N Engl J Med. 328: 1313-1316.
26. Giovannucci, E., Egan, K.M., Hunter, D.J., Stampfer, M.J., Colditz, G.A., Willet, W.C. and Speizer, F.E. (1995) Aspirin and the risk of colorectal cancer in woman. N Engl J Med. 333: 609-614.
27. Harris, C.C., Sun, T. (1984) Multifactoral etiology of human liver cancer.
Carcinogenesis, 5: 697-701.
28. Hial, V., De Mello, M.C., Horakova, Z. and Beaven, M.A. (1977) Antiproliferative activity of anti-inflammatory drugs in two mammalian cell culture lines. J Pharmacol
Exp Ther. 202: 446-454.
29. Huo, T.I. and Lee, S.D. (2004) Management of inoperable hepatocellular carcinoma. Journal of Gastroenterology and Hepatology, 19, S272-S278.
30. Hla, T., Neilson, K. (1992) Human cyclooxygenase-2 cDNA. Proc. Natl. Acad. Sci. USA, 89: 7384-7388.
31. Jiang, S., Song, M.J., Shin, E.C., Lee, M.O., Kim, S.J. and Park, J.H. (1999) Apoptosis in human hepatoma cell lines by chemotherapeutic drugs via Fas-dependent and Fas-independent pathways. Hepatology, 29: 101-110.
32. Kano, Y., Suzuki, K., Akutsu, M., Suda, K., Inoue, Y,, Yoshida, M., Sakamoto, S. and Miura, Y (1992) Effects of CPT-11 in combination with other anti-cancer agents in culture. Int. J. Cancer, 50: 604-610.
33. Kano, Y., Ohnuma, T.,Okano, T., Holland, J.F. (1988) Effect of vincristine in combination with methotrexate and other antitumor agents in human acute lymphoblastic leukemia cells in culture. Cancer Res. 48: 351-356.
34. Kao, J.H. (2003) Hepatitis B virus genotypes and hepatocellular carcinoma in Taiwan. Intervirology, 46: 400-407.
35. Katsumata, K., Tomioka, H., Sumi, T. et al. (2003) Correlation between clinicopathologic factors and kinetics of metabolic enzymes for 5-fluorouracil given to patients with colon carcinoma by two different dosage regimens. Cancer Chemother Pharmacol. 51: 155-60.
36. Kern, M.A., Schubert, D., Sahi, D., Schöneweiß, M.M., Moll, I., Haugg, A.M., Dienes, H.P., Breuhahn, K. and Schirmacher, P. (2002) Proapoptotic and antiproliferative potential of selective cyclooxygenase-2 inhibitors in human liver tumor cells. Hepatology, 36: 885-894.
37. Koga, H., Sakisaka, S., Ohishi, M., Kawaguchi, J., Taniguchi, E., Sasatomi, K.,
Harada, M., Kurohiji, T. and Sata, M. (1999) Expression of cyclooxygenase-2 in human hepatocellular carcinoma: relevance to tumor differentiation. Hepatology, 29: 688-96.
38. Kondo, M., Yamamoto, H., Nagano, H., Okami, J., Ito, Y., Shimizu, J., Eguchi, H., Miyamoto, A., Dono, K., Umeshita, K., Matsuura, N., Wakasa, k.I., Nakamori, S., Sakon, M. and Monden, M. (1999) Incerased expression of COX-2 in nontumor liver tissue is associated with shorter disease-free survival in patients with hepatocellular carcinoma. Clin Cancer Res. 5: 4005-4012.
39. Kujubu, D.A., Fletcher, B.S.,Varnum, B.C., Lim, R.W., Herschman, H.R. (1991) TIS 10, a phorbol ester tumor promoter-inducible mRNA from Swiss 3T3 cells, encodes a novel prostaglandin synthase/cyclooxygenase homologue. J Biol Chem. 266: 12866-12872.
40. Kune, G.A., Kune, S., and Watson, L.F. (1988) Colorectal cancer risk, chronic illnesses, operations and medications: case control results from the melbourne colorectal cancer study. Cancer Res. 48: 4399-4404.
41. Liao, W.C., Hsiueh, Wu Felicia F.Y. and WU, C.W. (2000) Binary/ternary combined effects of vitamin K3 with other antitumor agents in nasopharyngeal carcinoma CG1 cells. International Journal of oncology, 17: 323-328.
42. Lin, D.Y., Lin, S.M., Liaw, Y.F. (1997) Non-surgical treatment of hepatocellular carcinoma. J Gastroenterol Hepatol. 12: S319–S328.
43. Liu, J.J., Wang, J.Y., Hertervig, E., Nilsson, A. and Duan, R.D. (2002) Sulindac induces apoptosis, inhibits proliferation and activates caspase-3 in Hep G2 cells. Anticancer Research, 22: 263-266.
44. Malet-Martino, M. and Martino, R. (2002) Clinical studies of three oral prodrugs of 5-fluorouracil (capecitabine, UFT, S-1): A review. The Oncologist, 7: 288-323.
45. Masferrer, J. L., Leahy, K.M., Koki, A.T., Zweifel, B.S., Settle, S.L., Woerner, B.M., Edwards, D.A., Flickinger, A.G., Moore, R.J. and Seibert, K. (2000) Antiangiogenic and
antitumor activities of cyclooxygenase-2 inhibitors. Cancer Res. 60: 1306-1311.
46. Matsunaga, N., Yamada, N., Ohira, M., Tachimori, A., Nishiguchi, Y., Nishino, H., Seki, S. and Hirakawa, K. (2004) Combined treatment with selective cyclooxygenase-2
inhibitor and fluorinated pyrimidines for liver metastasis of colon cancer. Oncology reports, 11: 167-171
47. McGlynn, K.A. Tsao, L. Hsing, A.W. Devesa, S.S. aand Fraumeni Jr, J.F. (2001) International trends and patterns of primary liver cancar. Int. J. Cancer, 94: 290-296.
48. Molina, M.A., Marta, S.A., Lemoine, M.G., Frazier, M.L. and Sinicrope, F.A. (1999) Increased cyclooxygenase-2 expression in human pancreatic carcinomas and cell lines: growth inhibition by nonsteroidal anti-inflammatory drugs. Cancer Res. 59: 4356-62.
49. Mosmann, T. (1985) Rapid colorimetric assay for cellular growth and survival application to proliferation and cytotoxicity assays. J Immunol Meth. 65: 55-63.
50. Nagatsuka, I., Yamada, N., Shimizu, S., Ohira, M., Nishino, H., Seki, S. and Hirakawa, K. (2002) Inhibitory effect of a selective COX-2 inhibitor on liver metastasis of colon cancer. Int J Cancer, 100: 515-519.
51. O’Banion, M. k., Winn, V. D. and Young, D. A. (1992) cDNA cloning and functional activity of a glucocorticoid-regulated inflammatory cyclooxygenase. Proc. Natl. Acad. Sci. USA, 89: 4888-4892.
52. O’Neill, G.P., Ford-Hutchinson, A.W. (1993) Expression of mRNA for cyclooxygenase-1 and cyclooxygenase-2 in human tissues. FEBS Lett. 330: 156-160.
53. Patt, Y.Z., Yoffe, B., Charnsangavej, C., Pazdur, R., Fisher, H., Cleary, K., Roh, M., Smith, R., Noonan, C.A., Levin, B. (1993) Low serum alpha-fetoprotein level in patients with hepato-cellular carcinoma as a predictor of response to 5-FU and interferon α2b. Cancer, 72: 2574-2582.
54. Peleg, I.I.,Maibach, H.T., Brown, S.H. and Wilcox, C.M.(1994) Aspirin and
nonsteroidal anti-inflammatory drugs use and the risk of subsequent colorectal cancer.
Arch Intern Med. 154: 394-399.
55. Pietras, K. and Hanahan, D. (2005) A multitargeted, metronomic, and
maximum-tolerated dose “Chemo-Switch” regimen is antiangiogenic, producing objective responses and survival benefit in a mouse model of cancer. Journal of clinical oncology, 23: 1-14.
56. Reeves, W. J., and Cailleau, R. (1969) Mechanism of growth inhibition by 5-fluorouracil. Reversal studies with pyrimidine metabolites in vitro. Proc. Society Exp. Biol. Med. 131: 1068-1072.
57. Sano, H., Kawahito, Y., Wilder, R.L., Hashiramoto, A., Mukai, S., Asai, K., Kimura, S., Kondo, M. and Hla, T. (1995) Expression of cyclooxygenase-1 and -2 in human colorectal cancer. Cancer Ress. 55: 3785-9.
58. Sano, H., Hla, T., Maier, J. A. M., Crofford, L. J., Case, J. P., Maciag, T. and Wilder. R. L. (1992) In vivo cyclooxygenase expression in synovial tissues of patients with rheumatoid arthritis and osteoarthritis and rats with adjuvant and streptococcal cell wall arthritis. J. Clin. Invest. 89: 97-108.
59. Silverstein, F.E., Faich, G., Goldstein, J.L., Simon, L.S., Pincus, T., Whelton, A., Makuch, R., Eisen, G., Agrawal, N.M., Stenson ,W.F., Burr, A.M., Zhao, W. W., Kent, J.D., Lefkowith J.B., Verburg, K.M., Geis G.S. (2000) Gastrointestinal toxicity with celecoxib vs nonsteridal anti-inflammatory drugs for osteoarthritis and rheumatoid arthritis-The CLASS study: a randomized controlled trial. JAMA. 284: 1247-1255.
60. Steel, G., Peckham, M. (1979) Exploitable mechanisms in combined radiotherapy-chemotherapy: the concept of additivity. Int J Radiat Oncol Biol Phys. 5: 85-91.
61. Steinbach G., Lynch, P.M,, Phillips, R.K.S., Wallace M.H., Hawk, E., Gordon, G.B., Wakabayashi, N. and Saunders, B., Shen, Y., Fujimura, T., Su, L.k. and Levin B. (2000)
The effect of celecoxib, a cyclooxygenase-2 inhibitor, in familial adenomatous
polyposis. N Engl J Med. 342: 1946-1952.
62. Suh, O., Mettlin, C. and Petrelli, N.J. (1993) Aspirin use, cancer, and polyps of the
large bowel. Cancer, 72: 1171-1177.
63. Tahara, M., Ochiai, A., Fujimoto, J., Boku, N., Yasui, W., Ohtsu, A. Tahara E. and Yoshida, S. (2004) Expression of thymidylate synthase, thymidine phosphorylase, dihydropyrimidine dehydrogenase, E2F-1,Bak, Bcl-X, and Bcl-2, and clinical outcomes for gastric cancer patients treated with bolus 5-fluorouracil. Oncology Reports, 11: 9-15.
64. Taylor-Robinson, S.D., Foster, G.R., Arora, S., Hargreaves, S., Thomas, H.C. (1997) Increase in primary liver cancer in the UK,1979-94 Lancet, 350: 1142-3.
65. Thun, M.J., Namboodiri, M.M. and Health, J. C. (1991) Aspirin use and reduced risk of fatal colon cancer. N Engl J Med. 325: 1593-1596.
66. Toyoshima, T., Kamijo, R., Takizawa, K. (2002) Inhibitor of cyclooxygenase-2 induces cell-cycle arrest in the epithelial cancer cell line via up-regulation of cyclin dependent kinase inhibitor p21. Br J Cancer, 86: 1150-1156.
67. Tsujii, M., Kawano, S., Tsuji, S., Sawaoka, H., Hori, M. and DuBois, R.N. (1998) Cyclooxygenase regulates angiogenesis induced by colon cancer cells. Cell, 93: 705-716.
68. Vane, J.R., Bakhle, Y.S., Botting, R.M. (1998) Cyclooxygenase 1 and 2. Annu Rev Pharmacol Toxicol. 38: 97-120.
69. Waddel, W.R., and Loughry, R.W. (1983) Sulindac for polyposis of the colon. J Surg Oncol. 24: 83-87.
70. Wagstaff, A.J., Ibbotson, T. and Goa, K.L. (2003) Capecitabine: A review of its pharmacology and therapeutic efficacy in the management of advanced breast cancer. Drugs, 63: 217-236.
71. White, W.B., Faich, G., Whelton, A., Maurath, C., Ridge, N.J., Verburg,
K.M., Geis, G.S. and Lefkowith, J.B. (2002) Comparison of thromboembolic
events in patiens treated with celecoxib, a cyclooxygenase-2 specific inhibitor,
versus ibuprofen or diclofenac. The American journal of cardiology, 89: 425-430.
72. Wieder, T., Perlitz, C., Wieprecht, M., Huang, R.T., Geilen, C.C. and Orfanos, C.E. (1995) Two new sphingomyelin analogues inhibit phosphatidylcholine biosynthesis by decreasing membrane-bound CTP: phosphocholine cytidylyltransferase levels in HaCaT cells. Biochem. J. 311: 873-879.
73. Xie, W., Chipman, J.G., Robertson, D.L., Erikson, R.L., Simmons, D.L. (1991) Expression of a mitogen-responsive gene encoding prostaglandin synthase is regulated by mRNA splicing. Proc. Natl. Acad. Sci. USA, 88: 2692-2696.
74. Yamazaki, R., Kusunoki, N., Matsuzaki, T., Hashimoto, S. and Kawai, S. (2002) Selective cyclooxygenase-2 inhibitors show a differential ability to inhibit proliferation and induce apoptosis of colon adenocarcinoma cells. FEBS Lett. 531: 278-284.
75. Ye, S.L. (2004) Research on recurrence and metastasis of hepatocellular carcinoma. Journal of Gastroenterology and Hepatology, 19: S264-S265.
76. Zhang, Y.C., Wang, S., Zhang, H., Ye,Y. J., Liang, B. and Chi, Z.R. (2004) Effects of selective cyclooxygenase-2 inhibitor NS-398 on 5-fluorouracil chemotherapy and progression of colon cells. Natl Med J China, April 2, 84: 583-586.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
1. 樟芝發酵液之抗發炎及其誘導癌細胞凋亡機制之探討
2. 合成的胜肽與黑豆對人類雌激素依賴型乳癌細胞之影響
3. 以流式細胞技術評估人類周邊血液白血球之免疫功能
4. Cyprohepatadine誘發人類大腸癌細胞凋亡及細胞週期停滯分子機制之研究
5. 第一部份黃芩成分對人類肝癌細胞株之影響及其作用機制探討第二部份大豆乳酸菌發酵液抗乳癌功效評估及其作用機制探討
6. 臺灣產黃水茄成分中Solamrgine之誘發細胞進行設定性死亡(Apoptosis)及其抗癌作用之分子機制的研究
7. 苯駢[1.3.2]-1,1-雙氧雙噻唑偶極體及喹啉-4-酮衍生物之分子及細胞機制研究
8. 利用三維定量構效關係與虛擬篩選方式挑選出具COX-2專一性的抑制劑
9. Hispolon經由血管內皮生長因子的訊息傳導路徑降低腫瘤誘發的血管新生及誘導前列腺癌細胞凋亡之研究
10. 環胞靈誘發牙齦腫大致病機轉之研究
11. 鹽酸黃連素(Berberine)體外抑制血癌細胞之機轉及影響氮-乙醯轉移酵素(NAT)的活性及2-AF乙醯化體內代謝分佈之研究
12. 綠茶素對於預防乳癌的效能:綜論
13. 豬傳染性胃腸炎病毒誘發細胞凋亡之研究
14. 石鹼樹皮中之皂素成分抑制人類前列腺癌細胞(PC3)的生長,並誘發細胞凋亡反應。
15. AZC-5(Aziridinoquinonylcarbon-5)對DNA烷基化作用能力的研究及其對Hep-2喉癌細胞毒殺作用的探討