跳到主要內容

臺灣博碩士論文加值系統

(44.220.181.180) GMT+8:2024/09/18 09:43
Font Size: Enlarge Font   Word-level reduced   Reset  
Back to format1 :::

Browse Content

Author my cdr record
 
twitterline
Author:楊信欣
Author (Eng.):Hsin-Sin Yang
Title:利用異相催化氧化法處理掩埋場滲出水之可行性研究
Title (Eng.):Using Heterogeneous Catalytic Oxidation Processes for the Treatment of Landfill Leachate
Advisor:范煥榮范煥榮 author reflink
advisor (eng):Huan-Jung Fan
degree:Master
Institution:弘光科技大學
Department:環境工程研究所
Narrow Field:工程學門
Detailed Field:環境工程學類
Types of papers:Academic thesis/ dissertation
Publication Year:2006
Graduated Academic Year:94
language:Chinese
number of pages:130
keyword (chi):掩埋場滲出水催化劑等溫吸附活性碳
keyword (eng):LandfillLeachateCatalystAdsorption isothermGAC
Ncl record status:
  • Cited Cited :5
  • HitsHits:294
  • ScoreScore:system iconsystem iconsystem iconsystem iconsystem icon
  • DownloadDownload:0
  • gshot_favorites title msgFav:0
摘 要
本研究分析台灣北部某垃圾掩埋場滲出水水質變化特性,並探討利用異相催化氧化法(FeGAC/H2O2、Nano Fe/H2O2與FeGAC/O3)處理垃圾掩埋場滲出水可行性。
滲出水水質分析內容包括COD、BOD、SS、TS、VSS、揮發性有機物(VOC)、有機物官能基、毒性試驗 (Microtox acute tests)與金屬(Pb、Ca、Cd、Hg、Cr、Cu、Fe、K、Mg、Mn、Na、Ni與Zn)等項目。分析結果顯示COD、BOD與SS平均值與範圍分別為8884 (3962-17670)、2435 (948-3663)與396 (88-717) mg/L。滲出水水質受季節影響甚大,其中以秋季時之有機物質濃度(COD與BOD)為最高。滲出水廠各單元滲出水之毒性甚高,未來應進一步加以探討。
實驗結果顯示,異相催化氧化程序對滲出水處理效率較單純使用GAC高約三倍。例如FeGAC/H2O2、Nano Fe/H2O2、FeGAC/O3與GAC之處理效率依序為74%、47%、61% 與22%。Intra-particle diffusion model可用來描述FeGAC/H2O2與FeGAC/O3處理程序。三種異相催化氧化法中以FeGAC/H2O2程序對實廠滲出水處理效率最佳,具發展潛力。

關鍵字:掩埋場、滲出水、催化、等溫吸附、活性碳
Abstract
The purpose of this study is to investigate the characteristics of a northern Taiwan’s landfill leachate and the feasibility of applying heterogeneous catalytic oxidation processes (FeGAC/H2O2, Nano Fe/H2O2 and FeGAC/O3) for the treatment of the leachate.
Parameters investigated in this research included contents of COD, BOD, SS, TS, VSS, VOC, functional groups, Microtox acute tests and metals (Pb, Ca, Cd, Hg, Cr, Cu, Fe, K, Mg, Mn, Na, Ni and Zn). The experimental results showed that average and range of COD, BOD and SS of landfill leachate were 8884 (3962-17670), 2435 (948-3663) and 396 (88-717) mg/L, respectively. Fall season had the highly organic contents (COD and BOD). The toxicities were relatively high in landfill leachate.
The experimental results indicated that the removal efficiency of heterogeneous catalytic oxidation processes is more efficient than using GAC alone. For example FeGAC/H2O2, Nano Fe/H2O2, FeGAC/O3 and GAC removal efficiencies were 74, 47, 61 and 22 %, respectively. The kinetic reaction data of FeGAC/H2O2 and FeGAC/O3 processes can fit well with Intra-particle diffusion model. The removal efficiency of FeGAC/H2O2 process is better than those of FeGAC/O3 and Nano Fe/H2O2 processes.

Keywords:Landfill, Leachate, Catalyst, Adsorption isotherm, GAC
目 錄
誌 謝.....................................................I
摘要.....................................................II
Abstract................................................III
目錄......................................................V
表目錄...................................................XI
圖目錄...................................................XI
符號表...................................................XV
第一章 序論...............................................1
1-1 研究背景..............................................1
1-2 研究目的..............................................2
第二章 文獻回顧...........................................3
2-1 台灣地區垃圾處理方式..................................3
2-2 衛生掩埋場分佈........................................3
2-2-1 垃圾滲滲出水來源....................................8
2-2-2 垃圾滲出水的性質....................................8
2-2-3 影響垃圾滲出水性質因子.............................12
2-3 垃圾滲出水處理技術...................................13
2-3-1 生物程序...........................................13
2-3-2 物化程序...........................................15
2-3-3 高級氧化法.........................................16
2-4 異相催化氧化法.......................................19
2-4-1 異相催化氧化法反應機制.............................20
2-5 等溫吸附模式.........................................21
2-5-1 Freundlich Equation................................21
2-5-2 Langmuir Equation..................................22
2-5-3 Sips Equation......................................22
2-6 反應動力模式.........................................23
2-6-1 Generalized first order equation...................23
2-6-2 Pseudo-first-order equation........................24
2-6-3 Pseudo-second-order equation.......................24
2-6-4 Intra-particle diffusion model.....................25
2-6-5 Two box model......................................25
2-6-6 Sum of error squares (SSE).........................25
第三章 實驗設備與方法....................................27
3-1研究方法..............................................27
3-2實驗材料與設備........................................30
3-2-1掩埋場位址..........................................30
3-2-2 測試廢水配製.......................................32
3-2-3 粒狀活性碳(GAC)....................................32
3-2-4氧化鐵覆膜活性碳(FeGAC).............................32
3-2-5奈米鐵配製(Nano Fe).................................32
3-2-6臭氧產生機..........................................33
3-3 實驗藥品.............................................34
3-3-1 覆膜氧化鐵觸媒藥品.................................34
3-3-2 奈米鐵配製藥品.....................................34
3-3-3 測試廢水藥品.......................................34
3-3-4 臭氧分析藥品.......................................34
3-3-5 總有機碳(Total organic carbon)分析儀藥品...........35
3-3-6 離子層析儀(Ion chromatography)分析儀藥品...........35
3-3-7 元素分析儀(Element analyzer)分析藥品...............35
3-3-8 傅立葉紅外線光譜儀(FT-IR spectrophotometer analyzer)分析藥品.................................................35
3-4 儀器分析方法.........................................36
3-4-1 分光光度計/UV spectrophotometer analyzer...........36
3-4-2 總有機碳分析儀/Total organic carbon analyzer.......36
3-4-3 酸鹼度計/pH meter analyzer.........................38
3-4-4離子層析儀/Ion chromatography analyzer..............38
3-4-5元素分析儀/Element analyzer.........................39
3-4-6氣相層析質譜儀/Gas chromatography/Mass analyzer.....40
3-4-7傅立葉紅外光譜儀/FT-IR spectrophotometer analyzer...41
3-4-8毒性分析儀/SDI M500 analyzer........................42
3-5實驗項目..............................................45
3-5-1 FeGAC/H2O2與Nano Fe/H2O2去除效率實驗(Removal efficiency)..............................................45
3-5-2 FeGAC/O3管柱實驗...................................45
3-5-3等溫吸附(Isotherm adsorption).......................49
第四章 結果與討論........................................50
4-1 滲出水廠處理效率.....................................50
4-1-1 滲出水廠水質特性分析...............................52
4-1-2滲出水有機物官能基..................................57
4-1-3 滲出水毒性試驗.....................................59
4-1-4季節對水質影響......................................61
4-1-5 掩埋場滲出水水質特性分析...........................63
4-1-6 掩埋場滲出水元素分析...............................66
4-1-7 滲出水廠揮發性有機物成分...........................68
4-2 異相催化氧化法.......................................70
4-2-1 催化劑配製.........................................70
4-2-2 FeGAC/H2O2處理程序.................................73
4-2-3 Nano Fe/H2O2處理程序...............................78
4-2-4 FeGAC/O3處理程序...................................83
4-3實廠滲出水處理........................................87
4-3-1 FeGAC/H2O2程序.....................................87
4-3-2 Nano Fe/H2O2程序...................................90
4-3-3 FeGAC/O3程序.......................................92
4-4處理模擬廢水與實廠放流水比較..........................95
4-5等溫吸附..............................................99
4-5-1吸附實驗結果........................................99
4-5-2等溫吸附模擬結果...................................101
4-6反應動力.............................................106
4-6-1 FeGAC/H2O2........................................106
4-6-2 FeGAC/O3..........................................112
4-6-3 Nano Fe/H2O2......................................117
第五章 結論與建議.......................................120
參考文獻................................................122
附錄A...................................................129
參考文獻
Ahn W. Y., Kang M. S., Yim S. K., and Choi K. H., 2002, "Advanced landfill leachate treatment using an integrated membrane process," Desalination, Vol.49, P109-114.
Amokeane A., Comel C., and Veron J., 1997, "Landfill leachates pretreatment by coagulation-flocculation," Water Research, Vol.31, No.11, P2775-2782.
Benfenatl E., Facchini G., Pierucci P., and Fanelli R., 1996, "Identification of organic contaminants in leachates from industrial waste landfills," trends in analytical chemistry, Vol.15, No.8, P305-310.
Calace N. and Petronio B. M., 1997, "Characterization of high molecular weight organic compounds in landfill leachate: Humic substances," Environmental Science Health, Vol.A23, No.8, P2229-2244.
Calli B., Mertoglu B., and Inanc B., 2005, "Landfill leachate management in Istanbul: applications and alternatives," Chemosphere, Vol.59, P819-829.
Chen P. H., 1996, "Assessment of leachates from sanitary landfills: Impact of age, rainfall, and treatment," Environment International, Vol.22, No.2, P225-237.
Chen S.S., Hsu H.D. and Li C.W., 2004, "A new method to produce nanoscale iron for nitrate removal, " Journal of Nanoparticle Research, Vol.6, P639-647.
Chitra S., Sekaran G., and Chandrakasan G., 1996, "Adsorption of a mutant strain of Pseudomonas pictorum on rice bran based activated carbon," Journal of Hazardous Materials, Vol.48, P239-250.
Chu W., and Ma C. W., 1998, "Reaction kinetics of UV-decolourization for dye materials," Chemosphere, Vol.37, P961-974.
Crank G. 1933, "The mathematics of diffusion, " London, New York: Clarendon Press.
Dollerer J. and Wilderer A. A., 1996, "Biological treatment of leachates from hazardous waste landfills using SBBR technology," Water Science and Technology, Vol.34 P437-444.
Fan H. J., Shu H. Y., and Tajima K., 2006, "Decolorization of acid black 24 by the FeGAC/H2O2 process," Journal of hazardous materials, B128, P192-200.
Fan H. J., Yang H. S., and Chen W. C., 2006, "Characteristics of landfill leachate in central Taiwan," Science of the Total Environment (in press)
Feigerle C. S., Bililign S., and Miller J. C., 2000, "Nanochemical-chemical reactions of iron and benzene within molecular clusters," Journal of Nanoparticle Research, Vol.2, P147-155.
Hegde U., Chang T. C., and Yang S. S., 2003, "Methane and carbon dioxide emissions from Shan-Chu-Ku landfill site in northern Taiwan," Chemosphere, Vol.52, P1275-1285.
Horan N. J., Gohar H., and Hill B., 1997, "Application of a granular activated carbon-biological fluidised bed for the treatment of landfill leachates containing high concentrations of ammonia," Water Science and Technology Vol.36, P369-375.
Huang C. P., Dong C., and Tang Z., 1993, "Advanced chemical oxidation : It's present role and potential future in hazardous waste treatment," Waste management, Vol.13, P361-377.
Ince N. H. and Tezcanli G., 1999, "Treatability of textile dye-bath effluents by advanced oxidation : preparation for reuse," Water Science and Technology, Vol.40, No.1, P183-190.
Ishigaki T., Sugano W., Nakanishi A., Tateda M., Ike M., and Fujita M., 2004, "The degradability of biodegradable plastics in aerobic and anaerobic waste landfill model reactors," chemosphere, Vol.54, P225-233.
Kang K. H., Shin H. S., and Park H., 2002, "Characterization of humic substances present in landfill leachates with different landfill ages and its implications," Water research, Vol.36, P4023-4032.
Kannan N., and Sundaram M. M., 2001, "Kinetics and mechanisms of removal of methylene blue by adsorption on various carbons- a comparative study," Dyes Pigments, Vol.51, P25-40.
Kuo W. G., 1992, "Decolorizing dye wastewater with Fenton's reagent," Water research, Vol.26, No.7, P881-886.
Lien H.L., and Zhang W. X., 2001, "Nanoscale iron particles for complete reduction of chlorinated ethenes," Colloids and Surfaces A: Physicochemical and Engineering Aspects, Vol.191, P97-105.
Linde K., Jonsson A. S., and Wimmerstedt R., 1995, "Treatment of three types of landfill leachate with reverse osmosis," Desalination, Vol.101, P21-30.
Lrene M.-C. L., 1996, "Characteristics and treatment of leachates from domestic landfills," Environmental intrmational, Vol.22, No.4, P433-442.
Marttinen S. K., Kettunen R. H., Sormunen K. M., and Soimasuo R. M., 2002, "Screening of physical-chemical methods for removal of organic material, nitrogen and toxicity from low strength landfill leachates," Chemosphere, Vol.46, P851-858.
Monje-Ramirez I. and Orta de Velasquez M. T., 2004, "Removal and transformation of recalcitrant organic matter from stabilized saline landfill leachates by coagulation-ozonation coupling processes," Water research, Vol.38, P2358-2366.
Ozturk I., Altinbas M., Koyuncu I., Arikan O., and Gomec-Yangin C., 2003, "Advanced physico-chemical treatment experiences on young municipal landfill leachates," Waste Management, Vol.23, P441-446.
Padilla A. P. and Tavani E. L., 1999, "Treatment of an industrial effluent by reverse osmosis" Desalination, Vol.126, P219-226.
Paolis F. D. and Kukkonen J., 1997, "Binding of organic pollutants to humic and fulvic acids: influence of pH and the structure of humic material," Chemosphere, Vol.34, No.8, P1693-1704.
Poon C. S., Huang Q., and Fung P. C., 1999, "Degradation kinetics of cuprophenyl yellow RL by UV/H2O2 ultrasonication process in Aqueous Solution," Chemosphere, Vol.38, P1005-1014.
Rivas F. J., Beltran F., Carvalho F., Gimeno O. and Frades J., 2005, "Study of Different Integrated Physical-Chemical + Adsorption Processes for Landfill Leachate Remediation," Industrial and Engineering Chemistry Research, Vol.44, P2871-2878.
Rivas F. J., Beltran F., Gimeno O. and Carvalho F., 2003, "Fenton-like Oxidation of Landfill Leachate," Journal of environmental science and health part A., Vol.A38, P371-379.
Robinson, H. D., Tech., B., and Bbarber, P. J., 1982, "Generation and Treatment of leachate form domestic wastes in Landfills," Water Pollution Control, P565-475.
Sotelo J. L. and Beltran F. J., 1989, "Henry's law constant for the ozone-water system," Water research, Vol.23, P1239-1246.
Ragle N., Kissel J., Ongerth J. E., and DeWalle F. B., 1995, "Composition and variability of leachate from recent and aged areas within a municipal landfill. Water Environment Research," Vol.67(2), P238-243.
Staehelln J., and Holgen J., 1985, "Decomposition of Ozone in Water in the Presence of Organic Solutes Acting as Promoters and Inhibitors of Radical Chain Reactionst," Environmental Science & Technology, Vol. 19, P1206-1213.
Tseng R., Wu F., and Juang R., 2003, "Liquid-phase adsorption of dyes and phenols using pinewood-based activated carbons," Carbon, Vol.41, P487-495.
Tchbanoglous G., Theisen T., and Vigil S. A., 1998, "Integrated Solid Waste Management," The McGraw-Hill Companies, Inc.
Voelker B. M., and Sulzberger B., 1996, "Effects of Fulvic acid on Fe(II) oxidation by hydrogen peroxide," Environmental Science & Technology, Vol.30, P1106-1114.
Wang Z. P., zhang Z., Lin Y. J., Deng N. S., Tao T., and Zhuo K., 2002, "Landfill leachate treatment by a coagulation-photooxidation process," Journal of Hazardous Materials, Vol.B95, P153-159.
Wu J. J., Wu C. C., Ma H. W., and Chang C. C., 2004, "Treatment of landfill leachate by ozone-based advanced oxidation processes," chemosphere, Vol.54, P997-1003.
Welander U., Henrysson T., and Welander T., 1997, "Nitrification of landfill leachate using suspended-carrier biofilm technology," Water research Vol. 31, No. 9, P2351-2355.
Yoon J., Cho S., Cho Y., and Kim S., 1998, "The characteristics of coagulation of Fenton reaction in the removal of landfill leachate organics," Water Science and Technology Vol. 38, P209-214.
Yuase A., Li F., Matsui Y., and Ebit K., 1997, "Characteristices of competitive adsorption of aquatic humic substances onto activated carbon," Water Science and Technology Vol.36, No.12, P231-238.
Zhang W. X., Wang C. B., and Lien H. L., 1998, "Treatment of chlorinated organic contaminants with nanoscale bimetallic particles," Catalysis Today, Vol.40, P387-395.
Zhang W.X., 2003, "Nanoscale iron particles for environmental remediation: An overview," Journal of Nanoparticle Research, Vol.5, P323-332.
Zou S. C., Lee S. C., Chan C. Y., Ho K. F., and Wang X. M., 2003, "Characterization of ambient volatile organic compounds at a landfill site in Guangzhou, South China," Chemosphere, Vol.51, P1015-1022.
陳文懿、李郁宜、阮國棟,1988,「垃圾掩埋場滲出水之處理技術」,工業污染防治,第25期,第110-129頁。
李公哲、林正芳,2001,「垃圾衛生掩埋場滲出水處理流程之研究」,環保月刊,第1卷,第2期,第124-135頁。
陳鴻烈、鄭慧玲、顏鳳旗,1995,「垃圾掩埋場滲出水處理之研究」,農林學報,第44卷,第2期,第39-52頁。
張淑芳、高思懷,1995,「Fenton法之原理與應用」,工業污染防治,第56期,第193-202頁。
李明憲,2003,「利用高級催化氧化法處理沙鹿掩埋場滲出水之研究」,碩士論文,大同大學化學工程研究所,台北。
張家驥,2001,「以臭氧為基礎之高級氧化程序處理垃圾滲出水之研究」,碩士論文,逢甲大學土木及水利工程研究所,台中。
張家旭,2000,「以溶解空氣浮除法做為垃圾滲出水前處理之研究」,碩士論文,國立台灣科技大學化學工程系,台北。
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
First Page Prev Page Next Page Last Page top
1. The Inquiry into Nursing Staff’s Recognition, Execution and Related Factors about Patient Safety Procedures
2. Degradation Kinetic of 2,4,6-Trichlorophenol in Aqueous During Nano-ZnO Catalyic Ozonation Processes
3. The long-term trend of air pollutant in Taiwan
4. The Study on the Influential Cluster of General Merchandise Store:The case of the Taipei Metropolis
5. A Study on the Masses'' Acceptance of RFID System Applied in Medical Clinics.
6. The information Effect of recommendation on internet-the empirical study of CAPITAL and SINOPAC.
7. Announcement Effect of Seasoned Equity Offering:Evidence from Taiwan’s Electronic Industry
8. Catalytic Incineration of Trichloroethylene by ZnO/Al2O3 Catalyst
9. Cloning, Expression and Activity Modulation of Human Squalene Synthase
10. Construction of the platform for analyzing adhesion-invasion to the epithelial cells from human and swine caused by pathogenic escherichia coli in vitro and Evaiuation of intestinal protection of some probiotics thereof
11. Schedule-dependent Effect and Apoptotic Potential of a Cyclooxygenase-2 Selective Inhibitor Etodolac plus 5-fluorouracil-induced Cytotoxicity in Human Liver Tumor Cells
12. Using Bimetal Oxides Granular Activated Carbon (BM-GACs) for the Treatment of Humic Acid and Copper
13. DESIGN AND CONTROL OF CABLE CONTROLLED 3-DOF SPACE SIMULATOR IN VIRTUAL REALITY
14. A Study on the Strain Softening and Anneal Hardening in Pseudo-single- and Dual-phase Zn-Al Alloys
15. A Study of the relationship between Special Education Teachers` Job Satisfaction and Organizational Commitment in National Special Schools
 
system icon system icon