|
1)McCabe JF. Cure performance of light-activated composites by differential thermal analysis. Dent Mater 1985; 1: 213-234 2)Lloyd CH, Joshi A, McGlynn E. Temperature rises produced by light sources and composites during curing. Dent Mater 1986; 2: 170-174 3)Masutani S, Setcos JC, Schnell RJ, Phillips RW. Temperature rise during polymerization of visible light activated resins. Dent Mater 1988; 4: 174-178 4)Smail SRJ, Patterson CJW, McLundie AC, Strang R. In vitrotemperature rises during visible-light curing of a lining material and a posterior composite. J Oral Rehab 1988; 15: 361-366 5)Hartanto H, Van Benthem H, Ott KHR. Untersuchungen uber das Temperaturverhalten von Komposit-Kunststoffen bei der Polymerisation (in German). Zahnarztl Welt 1990; 99: 986-988 6)Hannig M, Bott B. In-vitro pulp chamber temperature rise during composite resin polymerization with various light-curing sources. Dent Mater 1999; 15: 275-281. 7)Loney RW, Price RBT, Temperature transmission of high-output light-curing units through dentin. Oper Dent 2001; 26: 516-520. 8)Wataha J, Lockwood P, Lewis J, Rueggeberg F and Messer R. Biological effects of blue light from dental curing units. Dent Mater 2004; 20: 150-157. 9)Kleverlaan CJ, de Gee AJ. Curing efficiency and heat generation of various resin composites cured with high-intensity halogen lights. Eur J Oral Sci 2004; 112: 84-88. 10)Danesh G, Davids H, Duda S, Kaup M, Ott K and Schafer E. Temperature rise in the pulp chamber induced by a conventional halogen light-curing source and a plasma arc lamp. Am J Dent 2004; 17: 203-208. 11)MS Soh, Adrian UJ Yap, KS Siow Comparative depths of cure among various curing light types and methods. Oper Dent 2004; 29: 9-15 12)Lisani VF, Zander HA. Thermal injury to normal dog teeth: in vivo measurements to pulp temperature increase and their effect on the pulp tissue. J Dent Res 1952; 31: 548-558. 13)Pohto M, Scheinin A. Microscopic observation on living dental pulp. Acta Odontol Scand 1958; 16: 303-327. 14)Zach L, Cohen G. Pulp response to externally applied heat. Oral Surg 1965; 19: 515-530. 15)Hansen EK, Asmussen E. Correlation between depth of cure and temperature rise of light-activated resin. Scand J Dent Res 1993; 101: 176-179. 16)Nakamura S, Mukai T and Senoh M. High-power GaN P-N junction blue light emitting diodes. Jpn J Appl Phys 1991; 30: L1998-L2001. 17)Adrian W, Bennett D, Watts C. Performance of two blue light-emitting-diode dental light curing units with distance and irradiation-time. Dent mater 2004; 20: 72–79 18)Pummerer R, Kehlen H, Rubber XV. Polymerization of rubber, isoprene and styrene by light in the presence of sensitize. Bericht 1933; 66: 1107–1122. 19)Oster G. Dye sensitized photopolymerization. Nature 1954; 173: 300–301 20)Oster G, Photoreduction of synthetic dyes. J Chem Phys.1958; 55: 899. 21)Oster G, Bellin JS, Kimball RW, Schrader ME. Dye sensitized photooxidation. J Am Chem Soc. 1955; 81: 5095–5099 22)J.P. Fouassier, An introduction to the basic principles in UV-curing, Radiation Curing in Polymer Science and Technology. 1, Elsevier Applied Science, New York,1993, pp. 49. 23)Park YJ, Chae KH, Rawls HR. Development of a new photoinitiation system for dental light-cure composite resins. Dent Mater 1999; 15: 120–127 24)Rafikov SR, Gladyshev GP, Polymer synthesis. VI. Polymerization of methyl methacrylate activated by photooxidation in the presence of sensitizers. Vysokomolekul Soedin 1962; 4: 1345–1350. 25)Linde´n LA. Photocuring of polymeric dental materials and plastic composite resins, in: J.P. Fouassier, J.F. Rabek (Eds.), Radiation Curing in Polymer Science and Technology. 1, Elsevier Applied Science, New York, 1993, pp. 387. 26)Knezevic A, Tarle Z, Meniga A, Sutalo J, Pichler G, Ristic M. Degree of conversion and temperature rise during polymerization of composite resin samples with blue diodes. J Oral Rehab 2001; 6: 586-591. 27)Tarle Z, Meniga A, Knezevic A, Sutalo J, Ristic M and Pichler G. Composite conversion and temperature rise using a conventional, plasma arc and an experimental blue LED curing unit. J Oral Rehab 2002; 7: 662-667. 28)Yap AUJ, Soh MS. Thermal emission by different light-curing units. Oper Dent 2003; 28: 260-266. 29)Stahl F, Ashworth SH, Jandt KD, Mills RW. Light-emitting diode (LED) polymerization of dental composites: flexural properties and polymerization potential. Biomaterials 2000; 13: 1379-85. 30)Hofmann N, Hugo B and Klaiber B. Effect of irradiation type (LED or QTH) on photo-activated composite shrinkage kinetics, temperature rise, and hardness. Eur J Oral Sci 2002; 6: 471-479. 31)Nomura Y, Teshima W, Tanaka N, Yoshida Y, Nahara Y and Okazaki M. Thermal analysis of dental resins cured with blue light-emitting diode (LEDs). J Biomed Mater Res 2002; 2: 209-213. 32)Mills RW, Uhl A, Blackwell GB and Jandt KD. High power light emitting diode (LED) arrays versus halogen light polymerization of oral biomaterials: Barcol hardness, compressive strength and radiometric properties. Biomaterials 2002; 23: 2955-2963. 33)Teshima W, Nomura Y, Tanaka N, Urabe H, Okazaki M and Nahara Y. ESR study of camphorquinone/amine photoinitiator systems using blue light-emitting diodes. Biomaterials 2003; 24: 2097-2103. 34)Uhl A, Sigusch B and Jandt K. Second generation LEDs for the polymerization of oral biomaterials. Dent Mater 2004; 20: 80-87. 35)Ozturk B, Ozturk AN , Usumez A, Usumez S and Ozer F. Temperature rise during adhesive and resin composite polymerization with various light curing sources. Oper Dent 2004; 29: 325-332 36)Bouillaguet S, Caillot G, Forchelet J, Cattani-Lorente M, Wataha JC and Krejci I. Thermal risks from LED- and high-intensity QTH-curing units during polymerization of dental resins. J Biomed Mater Res 2005; 72: 260-267. 37)LUMILEDS Lighting. San Jose,California,USA. 38)Tarle Z, Knezevic A, Meniga A, Sutalo J, Panduric V, Pichler G. Influence of LED intensity on the temperature rise in composite. J Dent Res 2004; Abstract No.1870. 39)Vandewalle K, Roberts HW, Tiba A, Charlton D. Thermal emission from tip of LED & halogen curing lights. J Dent Res 2004; Abstract No.2677. 40)Bouschlicher M, Montes S and Qian F. Intrapulpal temperature increases with high intensity LED curing lights. J Dent Res 2004; Abstract No. 1875. 41)Hofmann N, Schulz B, Klaiber B. Photo-curing effects: temperature rise in LED- vs. PAC-cured composites. J Dent Res 2004; Abstract No.2680. 42)Aravamudhan K, Dickens S, Rakowski D, Flaim G, Eichmiller F, Fan PL. Depth of cure and temperature rise with LED curing lights. J Dent Res 2004; Abstract No.0415. 43)Asmussen E, Peutzfeldt A. Temperature rise induced by some light emitting diode and quartz-tungsten-halogen curing units. Eur J Oral Sci 2005; 1:96-98 44)Hitz B. Understanding LASER technology, PennWell Publishing Co, Oklahoma, 1985, pp.137-142. 45)Rechmann P. The CO2 laser in oral surgery Vol. 2, DPL Co, Queensland, 2003, pp.3-11. 46)Meniga A, Tarle Z, Ristic M, Sutalo J and Pichler G. Pulsed blue laser curing of hybrid composite resins. Biomaterials 1997; 18: 1349-1354. 47)Tarle Z, Meniga A, Ristic M, Sutalo J, Pichler G. Polymerization of composites using pulsed laser, Eur J Oral Sci 1995; 103: 394–398. 48)Powell GL, Anderson JR and Blankenau RJ. Laser and curing light induced in vitro pulpal temperature changes. J Clin Laser Med Surg 1999; 17: 3-5. 49)Cobb DS, Dederich DN and Gardner TV. In vitro temperature change at the dentin/pulpal interface by using conventional visible light versus argon laser. Lasers Surg Med 2000; 26: 386-397. 50)Pradhan RD, Melikechi N, Eichmiller F. The effect of irradiation wavelength bandwidth and spot size on the scraping depth and temperature rise in composite exposed to an argon laser or a conventional quartz-tungsten-halogen source. Dent Mater 2002; 3: 221-226. 51)Barr M. Introduction to pulse width modulation. Embedded systems programming, CMP Books, Kansas, 2001, pp.103-104. 52)Mills RW. Blue light emitting diodes alternative method of light curing. Br Dent J 1995; 178: 169-172 53)Sze SM. Physics of semiconductor devices. New York: Wiley,1981. 54)Nakamura S, Mukai T, Senoh M. Candela-class high-brightness InGaN/AlGaN double-heterostructure blue-light-emitting diodes. Appl Phys Lett 1994; 64: 1687–1689 55)Haitz RH, Craford MG, Weissman RH. Light Emitting Diodes.In: Bass M, editor. Handbook of optics, 2nd ed. New York:McGraw Hill, 1995 p. 12.1–39. 56)Tarle Z, Meniga A, Ristic M, Sutalo J, Pichler G, Davidson CL. The effect of the photopolymerization method on the quality of composite resin samples. J Oral Rehab 1998; 25: 436-442. 57)Närhi M, Yamamoto H, Ngassapa D and Hirvonen T. The neurophysiological basis and the role of inflammatory reactions in dentine hypersensitivity. Arch Oral Biol 1994; 39: 238-241. 58)O’Neil RG, Brown RC. The vanilloid receptor family of calcium-permeable channels: molecular integrators of micro environmental stimuli. News Physiol Sci 2003; 18: 226-230. 59)Peutzfeldt A, Asmussen E. Ketones in resin composites—effect of ketone content and monomer composition on selected mechanical properties. Acta Odontol Scand. 1992; 50: 253–258. 60)Peutzfeldt A. Quantity of remaining double bonds of diacetylcontaining resins. J. Dent. Res. 1994; 73: 511–515. 61)Peutzfeldt A. Quantity of remaining double bonds of propanalcontaining resins. J. Dent. Res. 1994; 73: 1657–1662. 62)Peutzfeldt A, Asmussen E. Effect of propanal and diacetyl on quantity of remaining double bonds of chemically cured BisGMA/TEGDMA resins, Eur. J. Oral Sci. 1996; 104: 309–312 63)Cohen SG, Chao HM, Photoreduction of aromatic ketones by amine. Studies of quantum yields and mechanism. J. Am Chem Soc. 1968; 90: 165–173. 64)Antonucci JM, S. Venz S. Tertiary amine salts and complexes as chemical and photochemical accelerators, J. Dent. Res. 1987; 66: 128 Abstr. No. 170. 65)Puppala R, Hegde A, Munshi AK. Laser and light cured composite resin restorations: in-vitro comparison of isotope and dye penetrations. J Clin Ped Dent 1996; 20: 213–218. 66)Rueggeberg FA, Twiggs SW, Caughman WF, Khajotia S. Lifetime intensity profiles of 11 light-curing units. J Dent Res 1996; 75: 380. Abstract No. 2897. 67)Barghi N, Berry T, Hatton C. Evaluating intensity output of curing lights in private dental offices. J Am Dent Assoc 1994; 25: 992–996 68)Martin FE. A survey of the efficiency of visible light curing units. J Dent 1998; 26: 239–243 69)Miyazaki M, Hattori T, Ichiishi Y, Kondo M, Onose H, Moore BK. Evaluation of curing units used in private dental offices. Oper Dent 1998; 23: 50–54. 70)Leonard DL, Charlton DG, Hilton TJ. Effect of curing-tip diameter on the accuracy of dental radiometers. Oper Dent 1999; 24: 31–37 71)Uhl A, Mills R and Jandt K. Polymerization and light-induced heat of dental composites cured with LED and halogen technology. Biomaterials 2003; 24: 1809-1820. 72)Lindberg A, Peutzfeldt A, Dijken van JW. Curing depths of a universal hybrid and a flowable resin composite cured with quartz halogen and light-emitting diode units. Acta Odontol Scand 2004; 2: 97-101 73)Asmussen E. Factors affecting the quantity of remaining double bonds in restorative resin polymers. Scand J Dent Res 1982; 90: 490-496 74)Rueggeberg FA, Craig RG. Correlation of parameters used to estimate monomer conversion in a light cured composite. J Dent Res 1988; 67: 932-937 75)Dewald JP, Ferracane JL. A comparison of four modes of evaluating depth of cure of light activated composites. J Dent Res 1987; 66: 727-730 76)Ferracane JL. Dental composite: Present status and research directions Second International Congress on Dental materials.1993: 45-53 77)Wang X, Perez F. Vickers Hardness of Hybrid Composite Cured By LED Curing Lights, J Dent Res 2004; Abstract No.1879. 78)Felix C, Price R, Andreou P. Curing depths of QTH and third-generation LED curing lights. J Dent Res 2004; Abstract No.0635. 79)Waldo BT, Broome JC, Ramp LC, Jones ZA. Depth of cure of composites with new generation LED lights. J Dent Res 2004; Abstract No.1886. 80)Thompson HF, Gomez HF, Puckett AD. Pulpal temperature changes after exposure to a light curing source. J Dent Res. 1997; 79: Abstract No. 524. 81)Bennett GE, Blank FL, Robertello FJ, Pelleu GB. Thermal effects of visible-light and chemical cured resin. J Dent Res. 1984; 199: Abstract No. 259 82)Raab WHM. Temperature changes in pulpal microcirculation. Proc Finn Dent Soc. 1992; 88: 469-479 83)Raab WHM, Muller H. Temperaturabhangige Veranderungen der Mikrozirkulation der Zahnpulpa. Dtsch Zahnarztl Z 1989; 44: 496-497 84)Tanoue N, Matsumura H & Atsuta M. Curing depth of prosthetics composite materials polymerized with their proprietary photo-curing units. J Oral Rehab 1999; 26: 594-599 85)Unterbrink GL, Muessner R. Influence of light intensity on two restorative systems. J Dent 1995; 23: 183-189 86)Yap AU, Wong NY, Siow KS. Composite cure and shrinkage associated with high intensity curing light. Oper Dent 2003; 28: 357-364 87)Cook WD. Factors affecting the depth of cure of UV-polymerized composites. J Dent Res 1980; 59: 800-808 88)Murray GA, Yates JL Newman SM. Ultraviolet light and ultraviolet light activated composite resins. J Pros Dent 1981; 46: 167-170 89)Mills RW, Jandt KD, Ashworth SH. Dental composite depth of cure with halogen and blue light emitting diode technology. Br Dent J 1999; 186: 388-391 90)Haitz RH, Craford MG, Weissman RH. Light Emitting Diodes.In: Bass M, editor. Handbook of optics, 2nd ed. New York: McGraw Hill, 1995. p. 12.1–39. 91)Newman SM, Murray GA, Yates JL. Visible light activated composite resins. J Pros Dent 1983; 50: 31-35 92)Ferracane JL, Caughman WF, Curtis JW Jr. Effect of light intensity and exposure duration on cure of resin composite. Oper Dent 1994; 19: 26-32
|