跳到主要內容

臺灣博碩士論文加值系統

(2600:1f28:365:80b0:1c8a:67e8:468f:8abd) 您好!臺灣時間:2024/12/12 00:07
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:黃大可
研究生(外文):Ta-Ko Huang
論文名稱:利用脈衝調節模式之高亮度發光二極體光固化雛型機降低在牙科材料固化時的照射溫度
論文名稱(外文):Reducing, by pulse width modulation, the curing temperature of a prototype high power LED light curing unit
指導教授:洪純正
學位類別:博士
校院名稱:高雄醫學大學
系所名稱:牙醫學研究所博士班
學門:醫藥衛生學門
學類:牙醫學類
論文種類:學術論文
論文出版年:2006
畢業學年度:94
語文別:中文
論文頁數:83
中文關鍵詞:發光二極體(LED)微處理器聚合作用脈衝調節模式(PWM)光固化機(LCU)
外文關鍵詞:Light emitting diode (LED)MicroprocessorPolymerizationPulse width modulation (PWM)Light curing units (LCUs)
相關次數:
  • 被引用被引用:0
  • 點閱點閱:329
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
近年來牙科光固化機傳統所採用的鹵素燈光源,已逐漸被高強度發光二極體取代。在光固化性牙科樹脂的固化過程中,溫度的上升經常會對牙髓組織形成潛在的危險。特別是高亮度發光二極體高輸出能量所引發的大量熱能,對牙髓組織和牙科固化材料的影響更大。
這些快速崛起之二代高亮度發光二極體所造成之臨床效應,並沒有太多文獻提出報告。本研究的目的是要研發一種採用脈衝調節模式,能降低照射溫度的高亮度發光二極體光固化機,與四種牙科高強度光固化機,針對其光強度和溫度改變來做比較。另外比較LED前置型與LED透過傳統光纖管照射,是否會在光強度及溫度上升有顯著的影響。
本研究係利用一組場效電晶體(MOSFET)所設計之電路,以微處理器(Microprocessor)撰寫程式執行脈衝調節模式Pulse width modulation (PWM),來控制發光二極體的照射方式,降低發光二極體光固化機照射時產生的溫度。依據六種不同程式所設計出的脈衝寬度,並將高亮度發光二極體置於照射先端製作成LED導管,檢測其亮度和溫度的變化,由Spearman’s統計相關係數裡發現所有脈衝調節模式,其亮度與溫度均呈現顯著性(p < 0.0001)之線性關係(r = 0.9466)。並由亮度和溫度上升的線性關係中,找出最適當的4/7脈衝模式(12 ms on and 9 ms off),製作成高強度發光二極體脈衝調節模式光固化雛型機(PWM LED LCU prototype)。將此種光固化雛型機,與其他三種商品化高亮度發光二極體光固化機做比較,及以一組高亮度鹵素燈光固化機作為對照。分別用數位測光表量測照射強度(Intensity),和用K型電熱偶線連接數位溫度計檢測牙髓腔內,從照射5秒到40秒間溫度變化的數據。以One-Way ANOVA and Tukey’s HSD test統計方法,顯示出以脈衝調節模式所啟動之光固化雛型機(PWM LED LCU prototype),能控制照射時產生較低的溫度,同時在輸出功率上仍然能維持高的強度(p < 0.0001)。此種光固化雛型機對Z250牙科樹脂材料的聚合結果,以Vickers微硬度測試機量測到的硬度(VHN)可達到76.28(SD0.86) 。
利用脈衝調節模式的技術控制高亮度發光二極體的啟動,應用在高強度發光二極體光固化機上,即使在使用前置式發光二極體導管直接照射,也能有效的降低溫度而且維持高強度。當發光二極體導管取代傳統式光纖管傳導光源時,不但能降低光固化機的製造成本,而且可避免光輸出傳導的損失,以及因光纖管使用不慎而摔落斷裂的危險。
第一章 緒論 1
第二章 材料與方法 12
第一節 脈衝寬度調節發光二極體光固化雛形機的特性 12
第二節 最適當的脈衝寬度調節模式 15
第三節 各種光固化機的特性和照射溫度 16
第四節 樹脂材料表面的硬度量測 17
第五節 統計分析 18
第三章 結果 19
第一節 各種不同脈衝寬度模式的光照強度 19
第二節 最適當的脈衝寬度調節模式 19
第三節 各種不同高亮度光固機的特性 20
第四節 高亮度發光二極體導管與光纖管的輸出比較 22
第五節 牙科樹脂材料的固化硬度 23
第四章 討論 24
第五章 結論 34
參考文獻 35
附表 43
附圖 51
1)McCabe JF. Cure performance of light-activated composites by differential thermal analysis. Dent Mater 1985; 1: 213-234
2)Lloyd CH, Joshi A, McGlynn E. Temperature rises produced by light sources and composites during curing. Dent Mater 1986; 2: 170-174
3)Masutani S, Setcos JC, Schnell RJ, Phillips RW. Temperature rise during polymerization of visible light activated resins. Dent Mater 1988; 4: 174-178
4)Smail SRJ, Patterson CJW, McLundie AC, Strang R. In vitrotemperature rises during visible-light curing of a lining material and a posterior composite. J Oral Rehab 1988; 15: 361-366
5)Hartanto H, Van Benthem H, Ott KHR. Untersuchungen uber das Temperaturverhalten von Komposit-Kunststoffen bei der Polymerisation (in German). Zahnarztl Welt 1990; 99: 986-988
6)Hannig M, Bott B. In-vitro pulp chamber temperature rise during composite resin polymerization with various light-curing sources. Dent Mater 1999; 15: 275-281.
7)Loney RW, Price RBT, Temperature transmission of high-output light-curing units through dentin. Oper Dent 2001; 26: 516-520.
8)Wataha J, Lockwood P, Lewis J, Rueggeberg F and Messer R. Biological effects of blue light from dental curing units. Dent Mater 2004; 20: 150-157.
9)Kleverlaan CJ, de Gee AJ. Curing efficiency and heat generation of various resin composites cured with high-intensity halogen lights. Eur J Oral Sci 2004; 112: 84-88.
10)Danesh G, Davids H, Duda S, Kaup M, Ott K and Schafer E. Temperature rise in the pulp chamber induced by a conventional halogen light-curing source and a plasma arc lamp. Am J Dent 2004; 17: 203-208.
11)MS Soh, Adrian UJ Yap, KS Siow Comparative depths of cure among various curing light types and methods. Oper Dent 2004; 29: 9-15
12)Lisani VF, Zander HA. Thermal injury to normal dog teeth: in vivo measurements to pulp temperature increase and their effect on the pulp tissue. J Dent Res 1952; 31: 548-558.
13)Pohto M, Scheinin A. Microscopic observation on living dental pulp. Acta Odontol Scand 1958; 16: 303-327.
14)Zach L, Cohen G. Pulp response to externally applied heat. Oral Surg 1965; 19: 515-530.
15)Hansen EK, Asmussen E. Correlation between depth of cure and temperature rise of light-activated resin. Scand J Dent Res 1993; 101: 176-179.
16)Nakamura S, Mukai T and Senoh M. High-power GaN P-N junction blue light emitting diodes. Jpn J Appl Phys 1991; 30: L1998-L2001.
17)Adrian W, Bennett D, Watts C. Performance of two blue light-emitting-diode dental light curing units with distance and irradiation-time. Dent mater 2004; 20: 72–79
18)Pummerer R, Kehlen H, Rubber XV. Polymerization of rubber, isoprene and styrene by light in the presence of sensitize. Bericht 1933; 66: 1107–1122.
19)Oster G. Dye sensitized photopolymerization. Nature 1954; 173: 300–301
20)Oster G, Photoreduction of synthetic dyes. J Chem Phys.1958; 55: 899.
21)Oster G, Bellin JS, Kimball RW, Schrader ME. Dye sensitized photooxidation. J Am Chem Soc. 1955; 81: 5095–5099
22)J.P. Fouassier, An introduction to the basic principles in UV-curing, Radiation Curing in Polymer Science and Technology. 1, Elsevier Applied Science, New York,1993, pp. 49.
23)Park YJ, Chae KH, Rawls HR. Development of a new photoinitiation system for dental light-cure composite resins. Dent Mater 1999; 15: 120–127
24)Rafikov SR, Gladyshev GP, Polymer synthesis. VI. Polymerization of methyl methacrylate activated by photooxidation in the presence of sensitizers. Vysokomolekul Soedin 1962; 4: 1345–1350.
25)Linde´n LA. Photocuring of polymeric dental materials and plastic composite resins, in: J.P. Fouassier, J.F. Rabek (Eds.), Radiation Curing in Polymer Science and Technology. 1, Elsevier Applied Science, New York, 1993, pp. 387.
26)Knezevic A, Tarle Z, Meniga A, Sutalo J, Pichler G, Ristic M. Degree of conversion and temperature rise during polymerization of composite resin samples with blue diodes. J Oral Rehab 2001; 6: 586-591.
27)Tarle Z, Meniga A, Knezevic A, Sutalo J, Ristic M and Pichler G. Composite conversion and temperature rise using a conventional, plasma arc and an experimental blue LED curing unit. J Oral Rehab 2002; 7: 662-667.
28)Yap AUJ, Soh MS. Thermal emission by different light-curing units. Oper Dent 2003; 28: 260-266.
29)Stahl F, Ashworth SH, Jandt KD, Mills RW. Light-emitting diode (LED) polymerization of dental composites: flexural properties and polymerization potential. Biomaterials 2000; 13: 1379-85.
30)Hofmann N, Hugo B and Klaiber B. Effect of irradiation type (LED or QTH) on photo-activated composite shrinkage kinetics, temperature rise, and hardness. Eur J Oral Sci 2002; 6: 471-479.
31)Nomura Y, Teshima W, Tanaka N, Yoshida Y, Nahara Y and Okazaki M. Thermal analysis of dental resins cured with blue light-emitting diode (LEDs). J Biomed Mater Res 2002; 2: 209-213.
32)Mills RW, Uhl A, Blackwell GB and Jandt KD. High power light emitting diode (LED) arrays versus halogen light polymerization of oral biomaterials: Barcol hardness, compressive strength and radiometric properties. Biomaterials 2002; 23: 2955-2963.
33)Teshima W, Nomura Y, Tanaka N, Urabe H, Okazaki M and Nahara Y. ESR study of camphorquinone/amine photoinitiator systems using blue light-emitting diodes. Biomaterials 2003; 24: 2097-2103.
34)Uhl A, Sigusch B and Jandt K. Second generation LEDs for the polymerization of oral biomaterials. Dent Mater 2004; 20: 80-87.
35)Ozturk B, Ozturk AN , Usumez A, Usumez S and Ozer F. Temperature rise during adhesive and resin composite polymerization with various light curing sources. Oper Dent 2004; 29: 325-332
36)Bouillaguet S, Caillot G, Forchelet J, Cattani-Lorente M, Wataha JC and Krejci I. Thermal risks from LED- and high-intensity QTH-curing units during polymerization of dental resins. J Biomed Mater Res 2005; 72: 260-267.
37)LUMILEDS Lighting. San Jose,California,USA.
38)Tarle Z, Knezevic A, Meniga A, Sutalo J, Panduric V, Pichler G. Influence of LED intensity on the temperature rise in composite. J Dent Res 2004; Abstract No.1870.
39)Vandewalle K, Roberts HW, Tiba A, Charlton D. Thermal emission from tip of LED & halogen curing lights. J Dent Res 2004; Abstract No.2677.
40)Bouschlicher M, Montes S and Qian F. Intrapulpal temperature increases with high intensity LED curing lights. J Dent Res 2004; Abstract No. 1875.
41)Hofmann N, Schulz B, Klaiber B. Photo-curing effects: temperature rise in LED- vs. PAC-cured composites. J Dent Res 2004; Abstract No.2680.
42)Aravamudhan K, Dickens S, Rakowski D, Flaim G, Eichmiller F, Fan PL. Depth of cure and temperature rise with LED curing lights. J Dent Res 2004; Abstract No.0415.
43)Asmussen E, Peutzfeldt A. Temperature rise induced by some light emitting diode and quartz-tungsten-halogen curing units. Eur J Oral Sci 2005; 1:96-98
44)Hitz B. Understanding LASER technology, PennWell Publishing Co, Oklahoma, 1985, pp.137-142.
45)Rechmann P. The CO2 laser in oral surgery Vol. 2, DPL Co, Queensland, 2003, pp.3-11.
46)Meniga A, Tarle Z, Ristic M, Sutalo J and Pichler G. Pulsed blue laser curing of hybrid composite resins. Biomaterials 1997; 18: 1349-1354.
47)Tarle Z, Meniga A, Ristic M, Sutalo J, Pichler G. Polymerization of composites using pulsed laser, Eur J Oral Sci 1995; 103: 394–398.
48)Powell GL, Anderson JR and Blankenau RJ. Laser and curing light induced in vitro pulpal temperature changes. J Clin Laser Med Surg 1999; 17: 3-5.
49)Cobb DS, Dederich DN and Gardner TV. In vitro temperature change at the dentin/pulpal interface by using conventional visible light versus argon laser. Lasers Surg Med 2000; 26: 386-397.
50)Pradhan RD, Melikechi N, Eichmiller F. The effect of irradiation wavelength bandwidth and spot size on the scraping depth and temperature rise in composite exposed to an argon laser or a conventional quartz-tungsten-halogen source. Dent Mater 2002; 3: 221-226.
51)Barr M. Introduction to pulse width modulation. Embedded systems programming, CMP Books, Kansas, 2001, pp.103-104.
52)Mills RW. Blue light emitting diodes alternative method of light curing. Br Dent J 1995; 178: 169-172
53)Sze SM. Physics of semiconductor devices. New York: Wiley,1981.
54)Nakamura S, Mukai T, Senoh M. Candela-class high-brightness InGaN/AlGaN double-heterostructure blue-light-emitting diodes. Appl Phys Lett 1994; 64: 1687–1689
55)Haitz RH, Craford MG, Weissman RH. Light Emitting Diodes.In: Bass M, editor. Handbook of optics, 2nd ed. New York:McGraw Hill, 1995 p. 12.1–39.
56)Tarle Z, Meniga A, Ristic M, Sutalo J, Pichler G, Davidson CL. The effect of the photopolymerization method on the quality of composite resin samples. J Oral Rehab 1998; 25: 436-442.
57)Närhi M, Yamamoto H, Ngassapa D and Hirvonen T. The neurophysiological basis and the role of inflammatory reactions in dentine hypersensitivity. Arch Oral Biol 1994; 39: 238-241.
58)O’Neil RG, Brown RC. The vanilloid receptor family of calcium-permeable channels: molecular integrators of micro environmental stimuli. News Physiol Sci 2003; 18: 226-230.
59)Peutzfeldt A, Asmussen E. Ketones in resin composites—effect of ketone content and monomer composition on selected mechanical properties. Acta Odontol Scand. 1992; 50: 253–258.
60)Peutzfeldt A. Quantity of remaining double bonds of diacetylcontaining resins. J. Dent. Res. 1994; 73: 511–515.
61)Peutzfeldt A. Quantity of remaining double bonds of propanalcontaining resins. J. Dent. Res. 1994; 73: 1657–1662.
62)Peutzfeldt A, Asmussen E. Effect of propanal and diacetyl on quantity of remaining double bonds of chemically cured BisGMA/TEGDMA resins, Eur. J. Oral Sci. 1996; 104: 309–312
63)Cohen SG, Chao HM, Photoreduction of aromatic ketones by amine. Studies of quantum yields and mechanism. J. Am Chem Soc. 1968; 90: 165–173.
64)Antonucci JM, S. Venz S. Tertiary amine salts and complexes as chemical and photochemical accelerators, J. Dent. Res. 1987; 66: 128 Abstr. No. 170.
65)Puppala R, Hegde A, Munshi AK. Laser and light cured composite resin restorations: in-vitro comparison of isotope and dye penetrations. J Clin Ped Dent 1996; 20: 213–218.
66)Rueggeberg FA, Twiggs SW, Caughman WF, Khajotia S. Lifetime intensity profiles of 11 light-curing units. J Dent Res 1996; 75: 380. Abstract No. 2897.
67)Barghi N, Berry T, Hatton C. Evaluating intensity output of curing lights in private dental offices. J Am Dent Assoc 1994; 25: 992–996
68)Martin FE. A survey of the efficiency of visible light curing units. J Dent 1998; 26: 239–243
69)Miyazaki M, Hattori T, Ichiishi Y, Kondo M, Onose H, Moore BK. Evaluation of curing units used in private dental offices. Oper Dent 1998; 23: 50–54.
70)Leonard DL, Charlton DG, Hilton TJ. Effect of curing-tip diameter on the accuracy of dental radiometers. Oper Dent 1999; 24: 31–37
71)Uhl A, Mills R and Jandt K. Polymerization and light-induced heat of dental composites cured with LED and halogen technology. Biomaterials 2003; 24: 1809-1820.
72)Lindberg A, Peutzfeldt A, Dijken van JW. Curing depths of a universal hybrid and a flowable resin composite cured with quartz halogen and light-emitting diode units. Acta Odontol Scand 2004; 2: 97-101
73)Asmussen E. Factors affecting the quantity of remaining double bonds in restorative resin polymers. Scand J Dent Res 1982; 90: 490-496
74)Rueggeberg FA, Craig RG. Correlation of parameters used to estimate monomer conversion in a light cured composite. J Dent Res 1988; 67: 932-937
75)Dewald JP, Ferracane JL. A comparison of four modes of evaluating depth of cure of light activated composites. J Dent Res 1987; 66: 727-730
76)Ferracane JL. Dental composite: Present status and research directions Second International Congress on Dental materials.1993: 45-53
77)Wang X, Perez F. Vickers Hardness of Hybrid Composite Cured By LED Curing Lights, J Dent Res 2004; Abstract No.1879.
78)Felix C, Price R, Andreou P. Curing depths of QTH and third-generation LED curing lights. J Dent Res 2004; Abstract No.0635.
79)Waldo BT, Broome JC, Ramp LC, Jones ZA. Depth of cure of composites with new generation LED lights. J Dent Res 2004; Abstract No.1886.
80)Thompson HF, Gomez HF, Puckett AD. Pulpal temperature changes after exposure to a light curing source. J Dent Res. 1997; 79: Abstract No. 524.
81)Bennett GE, Blank FL, Robertello FJ, Pelleu GB. Thermal effects of visible-light and chemical cured resin. J Dent Res. 1984; 199: Abstract No. 259
82)Raab WHM. Temperature changes in pulpal microcirculation. Proc Finn Dent Soc. 1992; 88: 469-479
83)Raab WHM, Muller H. Temperaturabhangige Veranderungen der Mikrozirkulation der Zahnpulpa. Dtsch Zahnarztl Z 1989; 44: 496-497
84)Tanoue N, Matsumura H & Atsuta M. Curing depth of prosthetics composite materials polymerized with their proprietary photo-curing units. J Oral Rehab 1999; 26: 594-599
85)Unterbrink GL, Muessner R. Influence of light intensity on two restorative systems. J Dent 1995; 23: 183-189
86)Yap AU, Wong NY, Siow KS. Composite cure and shrinkage associated with high intensity curing light. Oper Dent 2003; 28: 357-364
87)Cook WD. Factors affecting the depth of cure of UV-polymerized composites. J Dent Res 1980; 59: 800-808
88)Murray GA, Yates JL Newman SM. Ultraviolet light and ultraviolet light activated composite resins. J Pros Dent 1981; 46: 167-170
89)Mills RW, Jandt KD, Ashworth SH. Dental composite depth of cure with halogen and blue light emitting diode technology. Br Dent J 1999; 186: 388-391
90)Haitz RH, Craford MG, Weissman RH. Light Emitting Diodes.In: Bass M, editor. Handbook of optics, 2nd ed. New York: McGraw Hill, 1995. p. 12.1–39.
91)Newman SM, Murray GA, Yates JL. Visible light activated composite resins. J Pros Dent 1983; 50: 31-35
92)Ferracane JL, Caughman WF, Curtis JW Jr. Effect of light intensity and exposure duration on cure of resin composite. Oper Dent 1994; 19: 26-32
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關論文