跳到主要內容

臺灣博碩士論文加值系統

(44.192.48.196) 您好!臺灣時間:2024/06/23 19:31
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:李佳螢
研究生(外文):Chia-Ying Lee
論文名稱:親核性試劑和鈀金屬催化烯雙炔化合物之環化反應
論文名稱(外文):Synthesis of Heteorcycles and Aromatic Compounds via Nucleophilic-Promoted and Palladium-Catalyzed Cycloaromatization of Enediynes
指導教授:吳明忠吳明忠引用關係
指導教授(外文):Ming-Jung Wu
學位類別:博士
校院名稱:高雄醫學大學
系所名稱:藥學研究所博士班
學門:醫藥衛生學門
學類:藥學學類
論文種類:學術論文
論文出版年:2006
畢業學年度:94
語文別:中文
論文頁數:134
中文關鍵詞:二苯并呋陰離子芳香性環化反應烯雙炔過渡金屬催化
外文關鍵詞:anionic cycloaromatizationenediynedibenzofuranscarbazolesnaphthalenebenzofulveneindenones
相關次數:
  • 被引用被引用:2
  • 點閱點閱:280
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
在過去的幾年中,我們實驗室曾對烯雙炔類的化合物進行陰離子芳香性環化反應來得到異喹啉酮、啡啶酮和聯苯之產物。在本論文中我們將繼續對烯雙炔化合物的環化模式進行的研究與探討,首先介紹二苯并呋喃和咔唑的合成方法研究。合成二苯并呋喃是藉由2-(6-substituted 3(Z)-hexen-1,5-diynyl)phenyl tert-butyldimethyl ethers與甲醇鈉再迴流甲醇溶液下進行反應而得,此反應有不錯的產率。另ㄧ方面是咔唑的合成研究,我們發現到最佳的反應條件是利用N-Acetyl-(Z)-2-(6-substituted 3(Z)-hexen-1,5-diynyl)anilines與KOtBu在NMP當溶媒溫度攝氏80度下反應得到高產率之咔唑。
另一個有趣的發現是利用N-acetyl-2-(6-substituted 3(Z)-hexen-1,5-diynyl)anilines或N-benzoyl-2-(6-substituted 3(Z)-hexen-1,5-diynyl)anilines與催化量之鈀金屬的催化劑反應來得到具多取代的萘環化合物。最後我們發現1,2-bis(substituted ethynyl)benzenes與5 mole% PdCl2和兩當量CuCl2反應可得到不錯產率的benzofulvenes和少量之indenones。
Recently, synthesis of several aromatic compounds, including isoquinolones, phenanthridinones, and biphenyls have been achieved by anionic cycloaromatization of enediynes in our lab. As part of our on going researches, these applications were applied to the preparation of two series of bioactive compounds, dibenzofurans and carbazoles, from various enediyne precursors. First of all, reaction of 2-(6-substituted 3(Z)-hexen-1,5-diynyl)phenyl tert-butyldimethyl ethers with sodium methoxide at reflux in methanol gave dibenzofurans in good yields. On the other hand, the synthesis of carbazoles were achieved by the reaction of N-acetyl-2-(6-substituted 3(Z)-hexen-1,5-diynyl)anilines with KOtBu in NMP at 80 oC.
Interestingly, when N-acetyl-2-(6-substituted 3(Z)-hexen-1,5-diyny
l)anilines or N-benzolyl-2-(6-substituted 3(Z)-hexen-1,5-diynyl)anilines were treated with catalytic amount of palladium, the reactions gave naphthalene derivatives in 22-48 % yields. Finally, treatment of 1,2-bis(substituted ethynyl)benzenes with 5 mole% of PdCl2 and two equivalents of CuCl2 in acetonitrile at 60 oC gave the benzofulvene adducts in good yields along with small amount of indenones.
中文摘要 1
英文摘要 2
簡稱用語對照表 3
壹、烯雙炔化合物的介紹 4
1.1 天然物含烯雙炔化合物之環化模式 4
圖一 Mechanism of DNA cleavage 5
圖二 Mode of biradical formation of calicheamicin 6
1.2 藉由加熱引發的烯雙炔類之芳香性環化反應 7
圖三 Bergman cyclization model 7
圖四 Bergman環化的相關反應 8
圖五 Myers-Saito cyclication 9
圖六 Saito cyclization 9
圖七 Myers環化的相關反應 10
圖八 propargyl sulfone藉由雙自由基的環化形成具芳香性化合物 11
圖九Schmittel cyclization 12
圖十 Myers環化的相關反應 12
圖十一 7-磺醯基-3-庚烯基-1,5-雙炔類化合物的環化模式 13
圖十二 Moore cyclication 14
1.3 非典型之烯雙炔類之芳香性環化反應 14
圖十三 Sondheimer對烯雙炔化合物環化機轉的研究 14
圖十四 陰離子誘導的neocarzinostatin chromophore的環化反應 15
圖十五 陰離子誘導之芳香性環化反應 16
圖十六 親電性試劑誘導之環化反應 17
圖十七 自由基加成誘導之環化反應 17
1.4經由過渡金屬催化的芳香性環化反應 18
圖十八 藉由過渡金屬(Ru)的催化反應之研究探討 19
圖十九 藉由過渡金屬(銠)的催化反應之研究探討 19
圖二十 過渡金屬(鈀)之催化環化反應進行探討 20
圖二十一 過渡金屬(釕)之催化環化反應之探討 21
圖二十二 藉由過渡金屬(鉑)催化反應之研究探討 22
圖二十三 藉由過渡金屬(鉑)催化反應之研究探討 22
贰、研究動機 23
圖二十四 經由陰離子芳香性環化反應之合成構想 23
圖二十五 經由過渡金屬催化之環化合成構想 24
参、二苯并呋喃環的製備和環化反應 25
3.1 研究動機 25
圖二十六α, β, γ-cotonefuran之結構 25
3.2 結果與討論 26
圖二十七 2-(3(Z)-decen-1,5-diynyl)phenol 102a 之合成方法 26
圖二十八 化合物 105之合成方法 27
圖二十九 化合物105e-j之合成方法 28
表一、5-取代二苯并呋喃環112環化模式之探討 30
3.3 結論 31
肆、5-取代咔唑的製備和環化反應 32
4.1 研究動機 32
圖三十 clausine M,N,O,clausevation D,E,F和 furoclausine-A之結構 32
4.2 結果與討論 33
圖三十一 化合物113a之合成方法 34
表二、化合物114a的環化條件之測試 34
表三、化合物113在potassium tert-Butoxide或potassium 3-ethyl-3-pentanoxid的環化反應 35
表四、化合物113乙醯化的反應 37
表五、化合物118在t-BuOK中的環化反應 38
表六、具不同取代基之化合物118的環化探討 38
圖三十二 化合物114h 之X-ray單晶結構繞射圖 39
4.3 結論 39
伍、萘環化合物的製備和環化反應的探討 41
5.1研究動機 41
5.2結果與討論 42
表七、化合物118b在Pd(CH3CN)2Cl2中進行溶媒效應的反應探討 43
表八、在DMF中加入不同Pd(II)來討論其反應性 44
表九、不同取代基之化合物118的環化反應 45
圖三十三 120d之X-ray單晶繞射圖 45
圖三十四 化合物120之反應機轉 46
5.3 結論 47
陸、Benzofulvenes化合物的製備和環化反應 48
6.1 研究動機 48
6.2 結果與討論 48
表十、化合物127在PdX2和CuX2中的環化反應 50
圖三十五 化合物128a之單晶繞射圖 50
圖三十六 化合物129a之單晶繞射圖 51
圖三十七 環化反應中取代基的效應 51
表十一、化合物127a的環化過程中親核性試劑的效應 53
圖三十八 化合物132a之X-ray單晶結構 53
圖三十九 化合物132a和128a的反應機轉 54
6.3結論 55
柒、参考文獻 56
捌、實驗部分 59
玖、化合物的製備方法 62
2-(3(Z)-Undecen-1,5-diynyl)phenyl tert-butyldimethylsilyl ether (105b) 63
2-(3(Z)-Tridecen-1,5-diynyl)phenyl tert-butyldimethylsilyl ether (105c) 64
2-(9- Tetrahydro-2H-pyranyloxy-3(Z)-nonen-1,5-diynyl)-)phenyl tert-butyldimethylsilyl ether (105d) 65
2-(2-(2-(Hexn-1-yl)phenyl)ethynyl)phenyl tert-butyldimethylsilyl ether (105e) 66
2-(2-(2-(Hept-1-yl)phenyl)ethynyl)phenyl tert-butyldimethylsilyl ether (105f) 67
2-(2-(2-(Non-1-yl)phenyl)ethynyl)phenyl tert-butyldimethylsilyl ether (105g) 67
2-(2-(2-(5-(Tetrahydro-2H-pyran-2-yloxy)pent-1-ynyl)phenyl)ethynyl)phenoxy tert-butyldimethylsilyl ether (105h) 68
2-(2-(2-(Hex-1-ynyl)naphthalene-3-yl)ethynyl)phenyl tert-butyldimethylsilyl ether (105i) 69
2-(2-(2-(Hept-1-ynyl)naphthalene-3-yl)ethynyl)phenyl tert-butyldimethylsilyl ether (105j) 70
4-tert-Butyl-2-(3(Z)-decen-1,5-diynyl)phenyl tert-butyldimethylsilyl ether (105k) 71
5-Butyldibenzofuran (112a) 71
5-Pentyldibenzofuran (112b) 72
5-Heptyldibenzofuran (112c) 73
5-[3-(2-Tetrahydropyanyloxy)propyl]dibenzofuran (112d) 73
5-Butylbenzo[c]dibenzofuran (112e) 74
5-Pentylbenzo[c]dibenzofuran (112f) 75
5-Heptylbenzo[c]dibenzofuran (112g) 76
5-[3-(2-Tetrahydropyanyloxy)propyl]benzo[c]dibenzofuran (112h) 76
5-Butylnaphtho[c]dibenzofuran (112i) 77
5-Pentylnaphtho[c]dibenzofuran (112j) 78
7-tert-Butyl-5-butyldibenzofuran (112k) 79
2-(6-Propyl-3-(Z)-hexen-1,5-diynyl)aniline (113g) 81
2-(6-Butyl-3-(Z)-hexen-1,5-diynyl)aniline (113a) 81
2-(6-Pentyl-3-(Z)-hexen-1,5-diynyl)aniline (113b) 82
2-(6-Hexyl-3-(Z)-hexen-1,5-diynyl)aniline (113e) 83
2-(6-Heptyl-3-(Z)-hexen-1,5-diynyl)aniline (113c) 83
2-(6-Tetrahydropyanyloxy-3-(Z)-nonen-1,5-diynyl)aniline (113d) 84
2-(6-Tetrahydropyanyloxy-3-(Z)-decen-1,5-diynyl)aniline (113f) 85
N-Acetyl-2-(6-butyl-3-(Z)-hexen-1,5-diynyl)aniline (118a) 86
N-Acetyl-2-(6-pentyl-3-(Z)-hexen-1,5-diynyl)aniline (118b) 86
N-Acetyl-2-(6-hexyl-3-(Z)-hexen-1,5-diynyl)aniline (118e) 87
N-Acetyl-2-(6-heptyl-3-(Z)-hexen-1,5-diynyl)aniline (118c) 88
N-Acetyl-2-(9-tetrahydropyan-2-yloxy-3-(Z)-nonen-1,5-diynyl)aniline (118d) 89
N-Acetyl-2-(9-tetrahydropyan-2-yloxy-3-(Z)-decen-1,5-diynyl)aniline (118f) 89
N-Trifluroacetyl-2-(6-butyl-3-(Z)-hexen-1,5-diynyl)aniline (118g) 90
N-Trifluroacetyl-2-(6-pentyl-3-(Z)-hexen-1,5-diynyl)aniline (118h) 91
N-Trifluroacetyl-2-(6-hexyl-3-(Z)-hexen-1,5-diynyl)aniline (118i) 92
N-Trifluroacetyl-2-(6-heptyl-3-(Z)-hexen-1,5-diynyl)aniline (118j) 93
4-Propyl-9-H-Carbazol (114g) 93
4-Butyl-9-H-Carbazol (114a) 94
4-Pentyl-9-H-Carbazol (114b) 95
4-Hexyl-9-H-Carbazol (114e) 95
4-Heptyl-9-H-Carbazol (114c) 96
4-(3-(Tetrahydropyan-2-yloxy)propyl)-9H-carbazole (114d) 97
4-(3-(Tetrahydropyan-2-yloxy)butyl)-9H-carbazole (114f) 97
4-Pentylbenzo[b]-9-H-Carbazol (114h) 98
4-Pentyl-6,8-dimethyl-9-H-Carbazol (114j) 99
4-Pentyl-6-chloro-9-H-Carbazol (114i) 100
2-Hept-1-en-3-ynyl-1H-indole (117g) 100
2-Oct-1-en-3-ynyl-1H-indole (117a) 101
2-Non-1-en-3-ynyl-1H-indole (117b) 102
2-Dec-1-en-3-ynyl-1H-indole (117e) 102
2-Undec-1-en-3-ynyl-1H-indole (117c) 103
2-(7-(Tetrahydropyan-2-yloxy)hept-1-en-3ynyl)-1H-indole (117d) 104
2-(8-(Tetrahydropyan-2-yloxy)oct-1-en-3ynyl)-1H-indole (117f) 104
2,6-Di(N-acetyl)benzoyl-1,5-dipentylnaphthalene (120a) 106
2,6-Di(N-acetyl)benzoyl-1,5-dihexylnaphthalene (120b) 106
2,6-Di(N-acetyl)benzoyl-1,5-diheptylnaphthalene (120c) 107
2,6-Di(N-acetyl)benzoyl-1,5-diphenylnaphthalene (120d) 108
2,6-Di(N-benzoyl)benzoyl-1,5-dipentylnaphthalene (120e) 109
2,6-Di(N-benzoyl)benzoyl-1,5-dihexylnaphthalene (120f) 110
2,6-Di(N-benzoyl)benzoyl-1,5-diphenylnaphthalene (120g) 111
(E)-3-(Chlorophenylmethylene)-2-phenyl-1-chloroindene (128a) 112
(E)-3-(Chloro-4-methoxyphenylmethylene)-2-4-methoxyphenyl-1-chloroindene (128b) 113
(Z)-3-(Chloro-4-methoxyphenylmethylene)-2-4-methoxyphenyl-1- 114
chloroindene (128b) 114
(E)-3-(Chloro-4-trifloromethylphenylmethylene)-2-4-trifloromethylphenyl-1-chloroindene (128c) 114
(Z)-3-(Chloro-4-trifloromethylphenylmethylene)-2-4-triflurormethylphenyl-1-chloroindene (128c) 115
(E)-3-(Chlorobutylmethylene)-2-butyl-1-chloroindene (128d) 116
3-Benzoyl-2-phenylindenone (129a) 116
3-(4-Methoxybenzyl)-2-(4-methoxyphenyl)indenone (129b) 117
3-(4-Trifloromethylbenzyl)-2-(4trifloromethyl)phenylindenone (129c) 118
(E)-3-(Bromophenylmethylene)-2-phenyl-1-bromoindene (130a) 118
(E)-3-(Bromo-4-methoxyphenylmethylene)-2-4-methoxyphenyl-1-bromoindene (130b) 119
(Z)-3-(Bromo-4-methoxyphenylmethylene)-2-4-methoxyphenyl-1-bromoindene (130b) 120
(E)-3-(Bromo-4-triflorophenylmethylene)-2-4-trifloromethylphenyl-1-bromoindene (130c) 120
(Z)-3-(Bromo-4-triflorophenylmethylene)-2-4-trifloromethylphenyl-1-bromoindene (130c) 121
(E)-3-(Bromobutylmethylene)-2-butyl-1-bromoindene (130d) 122
1-((E)-Hex-1-enyl)-2-(hex-1-ynyl)benzene (131d) 122
(E, Z)-3-(Methoxyphenylmethylene)-2-phenyl-1-chloroindene (132a) 123
(E, Z)-3-(Ethoxyphenylmethylene)-2-phenyl-1-chloroindene (132b) 124
(E, Z)-3-(i-Propoxyphenylmethylene)-2-phenyl-1-chloroindene (132c) 125
取(E)-3-(Bromophenylmethylene)-2-phenyl-1-bromoindene (130a) 126
1. Ishida, N.; Miyazaki, K.; Kumagai, K.; Rikimaru, M. J. Antibiot. 1965, 18, 68.
2. Lee, M. D.; Dunne, T. S.; Siegel, M. M.; Chang, C. C.; Morton, G. D.; Borders, D. B. J. Am. Chem. Soc. 1987, 109, 3464.
3. Golik, J.; Clardy, J.; Dubay, G.; Groenewold, G.; Kawaguchi, H.; Konishi, M.; Krishnan, B.; Ohkuma, H.; Saitoh, K.; Doyle, J. W. J. Am. Chem. Soc. 1987, 109, 3461.
4. Konishi, M.; Ohkuma, H.; Matsumoto, K.; Tsuno, T.; Kamei, H.; Miyaki, T.; Oki, T.; Kawaguchi, H.; VanDuyne, G. D.; Clardy, J. J. Antibiot. 1989, 42, 1449.
5. McDonald, L. A.; Capson, T. L.; Krishnamurthy, G.; Ging, W. D.; Ellestad, G. A.; Bernan, V. S.; Maiese, W. M.; Lassota, P.; Discafani, C.; Kramer, R. A.; Ireland, C. M. J. Am. Chem. Soc. 1996, 118, 10898.
6. Lee, J. E.; Scheoder, D. R.; Hofstaed, S. J.; Golik, J.; Colson, K. L.; Huang, S.; Klohr, S. E.; Doyle, J. W.; Matson, J. A. J. Am. Chem. Soc. 1992, 114, 7946.
7. Zein, N.; Megahren, W. J.; Morton, G. O.; Ashcroft, J.; Ellestad, G. A. J. Am. Chem. Soc. 1989, 111, 6888.
8. Edo, K.; Mizugaki, M.; Koide, Y.; Seto, H.; Furihata, K.; Otake, N.; Ishida, N. Tetrahedron Lett. 1985, 26, 331.
9. Suglyama, H.; Yamashlta, K.; Nlshlt, M.; Saito, I. Tetrahedron Lett. 1992, 33, 515.
10. Myers, A. G. Tetrahedron Lett. 1987, 28, 4493.
11. Kappen, L. S.; Goldberg, I. H.; Frank, B. L.; Worth, L. J.; Christner, D. F.; Kozarich, J. W.; Stubbe, J. Biochemistry 1994, 30, 2034.
12. Frank, B. L.; Worth, L. J.; Christner, D. F.; Kozarich, J. W.; Stubbe, J.; Kappen, L. S.; Goldberg, I. H. J. Am. Chem. Soc. 1991, 113, 2271.
13. Jones, R. R.; Bergman, R. G. J. Am. Chem. Soc. 1972, 94, 660.
14. Lockhart, T. P.; Comita, P. B.; Bergman, R. G. J. Am. Chem. Soc. 1981, 103, 4082.
15. Myers, A. G.; Dragovich, P. S. J. Am. Chem. Soc. 1989, 111, 9130.
16. Karisson, J. O.; Nguyen, N. V.; Foland, L. D.; Moore, H. W. J. Am. Chem. Soc. 1985, 107, 3392.
17. Grissom, J. W.; Calkins, T. L.; Egan, M. J. Am. Chem. Soc. 1993, 115, 11744.
18. Nagata, R.; Yamanaka, H.; Okazaki, E.; Saito, I. Tetrahedron Lett. 1989, 30, 4995.
19. Myers, A. G.; Dragovich, P. S.; Kuo, E. Y. J. Am. Chem. Soc. 1992, 114, 9369.
20. Wu, M. J.; Lin, C. F.; Wu, J. S.; Chen, H. T. Tetrahedron Lett. 1994, 35, 1879.
21. Schmittel, M.; Strittmatter, M.; Kiau, S. Tetrahedron Lett. 1995, 36, 4975.
22. Schmittel, M.; Steffen, J. P.; Niguel, A.; Angel, W.; Engels, B.; Lennartz, C.; Hanrath, M. Angew. Chem. Int. Ed. 1998, 37, 1562.
23. Wu, H. J.; Lin, C. F.; Lee, J. L.; Lu, W. D.; Lee, C. Y.; Chen, C. C.; Wu, M. J. Tetrahedron 2004, 60, 3927.
24. Xu , S. L.; Moore, H. W. J. Org. Chem. 1992, 57, 326.
25. Mayer, J.; Sondheimer, F. J. Am. Chem. Soc. 1966, 88, 603.
26. Sugiyama, H.; Yamashita, K.; Nishi, M.; Saito, I. Tetrahedron Lett. 1992, 33, 515.
27. Wu, M. J.; Lin, C. F.; Chen, S. H. Org. Lett. 1999, 1, 767.
28. Whitlock, J., H. W.; Sandvick, J., P. E.; Overman, L. E.; Reichardt, P. B. J. Org. Chem 1969, 34, 879.
29. Kovalenko, S. V.; Peabody, S.; Manoharan, M.; Clark, R. J.; Alabugin, I. V. Org. Lett. 2004, 6, 2457.
30. Iritani, K.; Matsubara, S.; Utimoto, K. Tetrahedron Lett. 1988, 29, 1799.
31. Yao, T.; Zhang, X.; Larock, R. C. J. Am. Chem. Soc. 2004, 126, 11164.
32. Ackermann, L. Org. Lett. 2005, 7, 439.
33. Gabriele, B.; Salerno, G.; Fabrizi, G. J. Org. Chem. 2003, 68, 7853.
34. Pastine, S. J.; Youn, S. W.; Sames, D. Org. Lett. 2003, 5, 1055.
35. Nakamura, I.; Bajracharya, G. B.; Wu, H.; Oishi, K.; Mizushima, Y.; Gridnev, I. D.; Yamamoto, Y. J. Am. Chem. Soc. 2004, 126, 15423.
36. Lin, M. Y.; Madhushaw, R. J.; Liu, R. S. J. Org. Chem. 2004, 69, 7700.
37. Wang, Y.; Finn, M. G. J. Am. Chem. Soc. 1995, 117, 8045.
38. Manabe, T.; Yanagi, S. I.; Ohe, K.; Uemura, S. Organometallics 1998, 17, 2942.
39. Wei, L. M.; Lin, C. F.; Wu, M. J. Tetrahedron Lett. 2000, 41, 1215.
40. Odedra, A.; Wu, C. J.; Pratap, T. B.; Huang, C. W.; Ran, Y. F.; Liu, R. S. J. Am. Chem. Soc. 2005, 127, 3406.
41. Lo, C. Y.; Kumar, M. P.; Chang, H. K.; Lush, S. F.; Liu, R. S. J. Org. Chem. 2005, 70, 10482.
42. Taduri, B. P.; Ran, Y. F.; Huang, C. W.; Liu, R. S. Org. Lett. 2006, 8, 883.
43. Miyagawa, H.; Yamashita, M.; Veno, T.; Hamada, N. Phytochemistry 1997, 46, 1289.
44. Kokubun, T.; Harbone, J. B. Phytochemistry 1995, 40, 1649.
45. Kokubun, T.; Harbone, J. B.; Eagles, J.; Waterman, P. G. Phytochemistry 1995, 39, 1033.
46. Morris, H. R.; Tayloer, G. W.; Masento, M. S.; Jermyn, K. A.; Kay, R. R. Nature 1987, 328, 811.
47. Abe, H.; Vchiyama, M.; Tanaka, Y.; Saito, H. Tetrahedron Lett. 1976, 42, 3801.
48. Yamato, T.; Hideshima, C.; Prakach, G. K. S.; Olah, G. A. J. Org. Chem. 1991, 56, 3192.
49. Akermark, B.; Eberson, L.; Jonsson, E.; Petterson, E. J. Org. Chem. 1975, 40, 1365.
50. S. Sasaki, S. Khoyo Taiwan MinKyo Shokutsu Shi, Khobunkan Publishing, Taipei. 1924, 36.
51. Wu., T. S.; Huang., S. C.; Teng., C. M.; Ko., F. N.; Kuoh, C. S. Phytochemistry 1993, 32, 449.
52. Wu, T. S.; Huang, S. C.; Wu, P. L. Phytochemistry 1996, 43, 133.
53. Wu, T. S.; Furykawa, H. J. Nat. Prod. 1982, 45, 718.
54. Wu., T. S.; Huang., S. C.; Wu., P. L.; Kuoh, C. S. Phytochemistry 1999, 52, 523.
55. Wu, M. J.; Lee, C. Y.; Lin, C. F. Angew. Chem. Int. Ed. 2002, 41, 4077.
56. Yasuhara, A.; Kaneko, M.; Sakamoto, T. Heterocycles 1998, 48, 1793.
57. Lee, C. Y.; Lin, C. F.; Lee, J. L.; Chiu, C. C.; Lu, W. D.; Wu, M. J. J. Org. Chem. 2004, 69, 2106.
58. Ramkumar, D.; Kalpana, M.; Varghese, B.; Sankararaman, S.; Jagadeesh, M. N.; Chandrasehhar, J. J. Org. Chem. 1996, 61, 2247.
59. Ma, S.; Wu, B.; Jiang, X.; Zhao, S. J. Org. Chem. 2005, 70, 2568.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top