跳到主要內容

臺灣博碩士論文加值系統

(44.201.97.138) 您好!臺灣時間:2024/09/16 02:14
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:劉虹君
研究生(外文):Hung-Chun Lin
論文名稱:散裝運輸運價指數之預測-模糊分段迴歸
論文名稱(外文):Forecasting And Analyzing the Baltic Dry Index–Using Fuzzy Piecewise Regression
指導教授:林成蔚林成蔚引用關係
指導教授(外文):Cheng-Wei Lin
學位類別:碩士
校院名稱:開南管理學院
系所名稱:航運與物流管理系碩士班
學門:運輸服務學門
學類:運輸管理學類
論文種類:學術論文
論文出版年:2006
畢業學年度:94
語文別:中文
論文頁數:92
中文關鍵詞:散裝運輸波羅地海運價指數預測模糊分段迴歸
外文關鍵詞:BDIForecastingFuzzy Piecewise Regression
相關次數:
  • 被引用被引用:8
  • 點閱點閱:635
  • 評分評分:
  • 下載下載:146
  • 收藏至我的研究室書目清單書目收藏:0
全球經貿的瞬息萬變,攸關航運市場租金與運費發展之動向。海上運輸以散裝貨物運輸為最大宗,而散裝運輸對台灣的經濟扮演著舉足輕重之角色,且散裝航運市場運價波動具有高度之不確定性,故引發本研究針對影響散裝運輸波羅地海乾散貨運價指數波動因素之探討。由於影響散裝運輸運價指數(BDI)變動的因素眾多,而過去相關預測方法較著重於船型大小與運費相關之預測,缺乏對散裝運輸運價總體面之分析,本文利用模糊分段迴歸(Fuzzy Piecewise Regression)與自動偵測轉折點(Automatic Change-Point Detection)進行預測,以構建散裝運輸BDI之預測模式,掌握未來市場運價與租金的發展趨勢,並以實例進行應用分析,研究結果顯示影響波羅地海運價指數變動的重要因素為利率、油價、二手船價格之Capesize船型、二手船價格之Panamax船型、新造船價格之Panamax船型、論時傭船之Capesize船型、論程傭船穀物運費、論程傭船煤礦運費。其中以二手船價格之Capesize船型與新造船價格之Panamax船型為影響BDI波動最為重要之因素。藉上述之影響因素投入預測模式中,可得知即時的散裝運輸BDI指數,可以此提供散裝航運業者作為傭船決策考量之依據。
The global economic and trade is changing rapidly, which influence the freight at the shipping market. The bulk shipping takes the most part of shipping business in Taiwan. There are many factors influence the freight of bulk shipping, thus, the uncertainty is high, which attract researchers to study the fluctuate factors of the Baltic Dry Index. There are numerous factors influence the Baltic Dry Index (BDI), however, based on the related literature review, there are lack of related research. Besides, most of them short of overall analysis of the Baltic Dry Index. This research, therefore, tries to use four major influence factors which intriduct by Gray. The forecasting model mostly uses the tradition regression in this field, but it is unable to deal with outliers. This research utilizes the fuzzy piecewise regression analysis with automatic change-point detection to forecast Baltic Dry Index, to build the freight and rent development trends of the shipping market.
The result of this study shows that the major factors influence Baltic Dry Index are the Oil price, second hand price of the Capesize ship, second hand price of the Panamax ship, new building price of the Panamax ship, the rent of time charter for Capesize, the rent of voyage charter for grain, and the rent of voyage charter for coal. Among these factors, the second hand price of the Capesize ship and new building price of the Panamax ship are the most important impact factor of the Baltic Dry Index. By using above-mentioned impact forecasting model, the instant Baltic Dry Index can be obtained, which provide the bulk operators a clear picture when considering the rent of the ship.
致 謝..............................................................................................................Ⅰ
中 文 摘 要....................................................................................................Ⅱ
英 文 摘 要....................................................................................................Ⅲ
目 錄..............................................................................................................Ⅳ
圖 目 錄..........................................................................................................Ⅶ
表 目 錄..........................................................................................................Ⅷ
第一章 緒論
1.1 研究背景與動機.................................................................................1
1.2 研究目的.............................................................................................2
1.3 研究範圍與限制.................................................................................3
1.4 研究架構.............................................................................................4
1.5 研究內容與方法.................................................................................4
1.6 研究流程.............................................................................................5
第二章 文獻回顧與評析
2.1 海運運價相關文獻.............................................................................7
2.1.1波羅地海運價指數...................................................................7
2.1.2運價指數影響因素...................................................................8
2.2 預測方法相關文獻............................................................................12
2.3 綜合評析............................................................................................15
2.3.1影響因素之綜整與評析..........................................................15
2.3.2預測方法之綜整與評析..........................................................19

第三章 散裝航運BDI發展與現況分析
3.1散裝航運市場之概況.........................................................................21
3.2 BDI發展歷程.....................................................................................22
3.2.1 BDI發展歷程圖......................................................................22
3.2.2 BDI發展之重要歷程..............................................................23
3.3 BDI計算公式.....................................................................................31
3.4 BDI之現況分析.................................................................................32
第四章 研究方法
4.1模糊理論............................................................................................34
4.2模糊分段迴歸....................................................................................36
4.2.1 模糊分段迴歸—可能性迴歸分析........................................36
4.2.2 模糊分段迴歸—必然性迴歸分析........................................37
4.3偵測改變點之模糊分段迴歸分析....................................................40
4.4多變量分段線性迴歸於必然性之問題............................................43
4.5自動偵測改變點之可能性分析........................................................43
4.6自動偵測改變點之必然性分析........................................................46
4.7本章小結............................................................................................48






第五章 實例應用分析
5.1數據資料之分析................................................................................49
5.2模糊分段迴歸之可能性模式分析....................................................65
5.2.1實例說明...................................................................................65
5.2.2模糊分段迴歸之研究設計.......................................................65
5.2.3模糊分段迴歸可能性模式之預測結果...................................67
5.2.4綜合討論與分析.......................................................................72
5.3模糊分段迴歸之必然性模式分析....................................................73
5.3.1模糊分段迴歸必然性模式之預測結果...................................74
5.3.2綜合討論與分析.......................................................................74
5.4本章小結............................................................................................75
第六章 結論與建議
6.1結論...................................................................................................76
6.2建議...................................................................................................78

參考文獻.......................................................................................79
一、中文部份

1. 王景南(2000),模糊迴歸分析在籃球比賽攻防技術之應用。國家科學委員會研究彙刊,人文及社會科學,第十卷第三期,頁287-298。
2. 林光、張志清(2002),航業經營與管理(下冊),台北市:航貿文化事業有限公司。
3. 吳柏林、曾能芳(1998):模糊迴歸參數估計及在景氣對策信號之分析應用,中國統計學報,第三十六卷,頁399-420。
4. 林信成、彭啟峰(1994):OH! Fuzzy 模糊理論剖析。台北市:第三波文化事業股份有限公司。
5. 林成蔚(2003),模糊測度理論在多目標決策方法中之發展與應用,國立交通大學交通運輸研究所博士論文。
6. 陳永順(2005),散裝海運經營學理論與實務,台北市:文笙書局股份有限公司。
7. 陳筱琪、徐作聖、曾國雄、胡宜中(2005),「可能性灰色預測及模糊迴歸於台灣股市加權指數之預測與分析」,資訊管理學報,第十二卷第一期,頁203-207。
8. 陳榮方、楊敏里(1997),「灰色理論與迴歸預測應用於短期財務預測之探討」,高雄科學技術學院學報,第二十七期,頁217-228。
9. 馮正民、邱裕鈞(2004),研究分析方法,新竹市:建都文化事業股份有限公司。
10. 黃琛暉(1996),大宗散裝貨進口預測與相關變數之研究,國立台灣海洋大學航運管理研究所碩士論文。

11. 曾芳美、曾國雄(1999),「SARIMA、模糊時間序列、模糊迴歸時間序列、灰色預測四種方法在預測應用之比較—台灣機械產業之總產值預測為例」,灰色系統學刊,第二卷第二期,頁83-98。
12. 曹勝雄、曾國雄、江勁毅(1996),「傳統計量迴歸、模糊迴歸、GMDH、類神經網路四種方法在預測應用之比較—以國人赴港旅客需求之預測為例」,中國統計學報,第三十四卷第二期,頁132-161。
13. 鍾政棋、黃承傳(2003),「散裝船傭船鏈經營形態之分析」,運輸學刊,第十五卷第一期,頁99-113。
14. 鍾政棋(2003),我國散裝航運公司船舶設籍與營運績效之分析,國立交通大學交通運輸研究所博士論文。

二、英文部分

1. Alizadeh-M, A. H. and Nomikos, N. K. (2003), “The price-volume relationship in the sale and purchase market for dry bulk vessels,” Maritime Policy and Management, 30(4), pp. 321-337.
2. Akatsuka, K. and Leggate, H. K. (2001), “Perceptions of foreign exchange rate risk in the shipping industry,” Maritime Policy and Management, 28(3), pp. 235-249.
3. Chen, Y. S. and Wang, S. T. (2004), “The empirical evidence of the leverage effect on volatility in international bulk shipping market,” Maritime Policy and Management, 31(2), pp. 109-124.
4. Cullinane, K. (1995), “A portfolio anyalsis of market investments in dry bulk shipping,” Transportation Research B, 29(3), pp. 181-200.
5. Gray, J. W. (1987), Financial risk management in the shipping industry, New York: Fairplay Publications Limited.
6. Kavnssanos, M. G (1996b),“Comparisions of Freight Market Volatility in the Dy-Cargo Ship Sector. Spot v.s. Time-Charter and Smaller v.s. Larger Vessels,” Journal of Transport Economics and Policy, XXX1,pp. 67-82.
7. Kavnssanos, M. G. , Alizadeh-M, A. H. (2002), “Seasonality patterns in tanker spot freight rate markets,” Economic Modelling, 19, pp. 747-782.
8. Kavnssanos, M. G. and Alizadeh-M, A. H. (2002), “Efficient pricing of ships in the dry bulk sector of the shipping industry,” Maritime Policy and Management, 29(3), pp. 303-330.
9. Koekebakker, S. and Adland, R. O. (2004), “Modelling forward freight rate dynamics-empirical evidence from time charter rates,” Maritime Policy and Management, 31(4), pp. 319-335.
10. Lee, H. T. and Chen, S. H. (2001), “Fuzzy regression model with fuzzy input and output data for manpower forecasting,” Fuzzy Sets and Systems, 119, pp. 205-213.
11. Lundgren, N. G. (1996), “Bulk trade and maritime transport costs,” Resources Policy, 22, pp. 5-32.
12. Lee, H. and Tanaka, H. (1999), “Upper and lower approximation models in interval regression using regression quantile techniques,” European Journal of Operational Research, 116, pp. 653-666.
13. Nasrabadi, M. M. and Nasrabadi, E. and Nasrabady, A. R. (2005), “Fuzzy linear regression analysis: a multi-objective programming approach,” Applied Mathematics and Computation, 163, pp. 245-251.
14. Stopford, M. (1995), “Shipping risks and risky ships: thoughts on the approach to market forecasting for tankers,” Shipping in Shell-Challenges and Opportunities,” Conference, pp. 117-136.
15. Tvedt , J. (2003), “A new perspective on price dynamics of the dry bulk market,” Maritime Policy and Management, 30(3), pp. 221-230.
16. Tanaka , H. and Uejima, and Asai, K. (1982), “Linear regression analysis with fuzzy regression model,” IEEE Trans. Systems Man Cybernet, 12, pp. 903-907.
17. UNCTAD (2004), Review of maritime transport, United Nations conference on trade and development, United Nations, UNCTAD/RMT, New York and Geneva.
18. Veenstra, A.W. and Franses, P. H. (1997), “A co-integration approach to forecasting freight rates the dry bulk shipping sector,” Transportation Research A, 31(6), pp. 447-458.
19. Yu, J. R. (1999), A fuzzy piecewise regression model with change-point detection, Ph.D. Dissertation, Institute of Information Management College of Management, National Chiao Tung University.
20.Yu, J. R. and Tzeng, G. H. , Li, H. L. (1999), “A general piecewise necessity regression analysis based on liner programming,” Fuzzy Sets and Systems, 105, pp. 429-436.
21. Yu, J. R. and Tzeng, G. H. , Li, H. L. (2001), “General fuzzy piecewise regression analysis with automatic change-point detection,” Fuzzy Sets and Systems, 119, pp. 247-257.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top