跳到主要內容

臺灣博碩士論文加值系統

(44.200.77.92) 您好!臺灣時間:2024/02/27 04:34
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:黃聖涵
研究生(外文):HuangSheng-Han
論文名稱:微波電漿中氮氫比例對奈米碳管成長的影響
論文名稱(外文):Effect of hydrogen and nitrogen percentage in microwave plasma on carbon nano tube growth
指導教授:張慎周
指導教授(外文):Shang-Chou Chang
學位類別:碩士
校院名稱:崑山科技大學
系所名稱:電機工程研究所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2006
畢業學年度:94
論文頁數:65
中文關鍵詞:奈米碳管
外文關鍵詞:carbon nanotube
相關次數:
  • 被引用被引用:0
  • 點閱點閱:155
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本研究採用微波電漿化學氣相沉積系統(MPCVD)在低溫(2500C)下合成奈米碳管。利用微波氮氫混合電漿及純氮、純氫電漿對鎳催化劑薄膜進行預處理,藉由觀察不同氮氫氣體比例電漿源預處理鎳催化劑薄膜的表面型態、後續成長的奈米碳管及場發射特性之影響,進而探討合適的氣體電漿源,改變預處理製程壓力、微波功率達到控制預處理參數對成長奈米碳管之影響。最後探討在成長奈米碳管製程氣體中,加入氮氣對奈米碳管成長及場發射特性之影響。
由實驗結果得知,固定預處理製程壓力25Torr與微波功率450W中,氮電漿轟擊蝕刻鎳薄膜效果比氫電漿大。在不同氮氫比例中,以氮氫比例(1:3)電漿源預處理鎳薄膜結果有較小的鎳顆粒粒徑及較高的顆粒密度,後續成長奈米碳管的品質也較佳(有低的開啟電場及高的電流密度)。預處理製程壓力在25Torr時,鎳薄膜經由處理後所形成的顆粒大小最平均,製程壓力低於(20Torr)或高於(30Torr)時,鎳薄膜處理後會形成不均勻的顆粒大小。隨著增加預處理的微波必v可使鎳顆粒平均粒徑變小、平均間距變大。當微波功率過高時(850W以上),鎳顆粒會產生聚結(Coalescence)效果,使得鎳顆粒平均粒徑變大、平均間距變小、顆粒大小變不均勻,對後續成長奈米碳管也會有直接的影響。
最後探討在成長奈米碳管製程溫度6000C中,改變不同氮氣流量通入製程氣體(氫氣及甲烷)中,發現可以使成長之奈米碳管的管徑變細、管長變長且碳管密度變高。
Microwave plasma chemical vapor deposition (MPCVD) was used to produce carbon nano tube(CNT) at 2500C in this work. Different percentage of N2/H2 microwave plasma was pretreated on nickel films into CNT producing catalyst. Surface morphology of nickel films after pretreatment, following grown CNT and its field emission properties were studied. After that, effects of chamber pressure, microwave power during pretreatment and N2/H2 percentage during growing CNT were also studied.
Experimental results show N2 plasma would have powerful sputter etching effect to nickel films than H2 one. Small grains and high grain density which benefit growing CNT are produced from N2:H2=1:3. Better CNT quality was experimentally observed.
Chamber pressure result shows pretreated ni grain size are irregular in either too high too low pressure. Optimum pressure in our MPCVD system is 25 torr. Microwave power result indicates increasing power, the sizes of the pretreated nickel particle becomes small and distance between particles large. As the power still increased over 850 W, sintering effect among nickel particles seems to appear: the grain size becomes irregular. Suitable N2 percentage in growing CNT can control the CNT diameter and density.
中文摘要---------i
英文摘要---------iii
致謝---------iv
目錄---------v
圖目錄---------viii
表目錄---------xi
一、 前言---------1
二、 相關原理---------4
2-1 奈米碳管的發展歷史---------4
2-1-1 奈米碳管的結構---------4
2-1-2 奈米碳管的製程方法---------5
2-1-3 奈米碳管的成長機制---------9
2-1-4 奈米碳管的性質及應用---------12
2-2 場發射的基本原理---------13
2-2-1 場發射的主要原因---------15
2-3 真空有關的氣體理論---------14
2-3-1 理想氣體定理---------14
2-4 電漿理論---------16
2-4-1 電漿---------16
2-4-2自我偏壓離子轟擊的形成---------17
2-5 薄膜相關原理---------17
2-5-1 晶粒成長---------17
2-5-2 聚結---------18
三、實驗項目---------19
3-1 實驗與檢測設備---------19
3-2 不同氮氫製程氣體電漿源預處理鎳催化劑薄膜---------24
3-3 固定氣體電漿源改變製程壓力---------26
3-4 固定氣體電漿源及製程壓力、改變製程功率---------28
3-5 固定預處理最佳參數,改變成長製程氣體比例---------30
四、結果與討論---------33
4-1 不同氮氫製程氣體電漿源預處理鎳催化劑薄膜---------33
4-1-1不同氮氫製程氣體電漿源預處理鎳催化劑薄膜後續成長奈米碳管之影響---------37
4-1-2 不同氮氫製程氣體電漿源預處理鎳催化劑薄膜後續成長奈米碳管之場發射特性的影響---------39
4-2 固定最佳製程氣體源參數及功率,改變預處理製程壓力---------41
4-2-1 固定氮氫比例(1:3)電漿氣體源參數及功率,改變預處理製程壓力對鎳催化劑薄膜後續成長奈米碳管之影響---------43
4-2-2 固定氮氫比例(1:3)電漿氣體源參數及功率,改變預處理製程壓力對鎳催化劑薄膜後續成長奈米碳管之場發射特性的影響---------45
4-3 固定最佳製程氣體源參數及壓力,改變預處理製程功率---------47
4-3-1 固定氮氫比例(1:3)電漿氣體源參數及25Torr製程壓力,改變預處理微波功率對鎳催化劑薄膜後續成長奈米碳管的影響---------50
4-3-2 固定氮氫比例(1:3)電漿氣體源參數及25Torr製程壓力,改變預處理微波功率對鎳催化劑薄膜後續成長奈米碳管之場發射特性的影響---------54
4-4 固定預處理參數,改變成長奈米碳管製程氣體流量比---------56
4-4-1固定成長奈米碳管製程氣體,改變氮氣流量對成長奈米碳管之場發射特性的影響---------59
五、結論----------61
參考文獻---------62
[1]S. Iijima, Helical microtubules of graphitic carbon, Nature.Sol.354 (1991), 56-58.
[2]H. W. Kroto, J. R. Heath, S. C. O’Brian, R. F. Curl and R. E. Smalley,C60: Buckminsterfullerene, Nature.Sol.318(1985), 162-164.
[3]W. Kratschmer, L. D. Lamb, K. Fostiropoulos and D. R. Huffman, Solid C60:a new form of carbon, Nature.Sol.347 (1990), 347-354.
[4]A. Maiti, C. J. Brabec, C. Roland, and J. Bernholc, Theory of carbon nanotube growth, Phys. Rev. B.Sol.52(1995), 14850.
[5]A. C. Dillon, K. M. Jones, T. A. Bekkeclahl, C. K. Kiang, D. S. Bethune, and M. J. Heben, Storage of hydrogen in single-walled carbon nanotubes, Nature.Sol.386 (1997) , 377-379.
[6] G. Nagy, M. Levy, R. Scarmozzino, R. M. Osgood, Jr. H. Dai, R. E. Smalley, and G. F. McLane, Carbon nanotube tipped atomic force microscopy for measurement of <100 nm etch morphology on semiconductors, Appl. Phys. Lett.Sol.73(1998), 529-531.
[7]T.W.Ebbesen , P.M.Ajayan, Large-scale synthesis of carbon nanotubes,nanotubes,Nature.Sol.358(1992),220.
[8]M.S.Dresselhaus,G.Dresselhaus and R.Saito, Physics of carbon nanotubes,Carbon.Sol.33(1995), 883-891.
[9]S. Iijima and T. Ichihashi, Single-Shell Carbon Nanotubes of 1-nm Diameter, Nature. Sol.363(1993), 603-605.
[10]D.S. Bethune, C.H. Kiang, M.S. deVries, G. Gorman, R. Saroy, J.
Vazguez, and R. Beyers, Cobalt-Catalyzed Growth of Carbon Nanotubes with Single-Atomic-Layerwalls , Nature.Sol.363(1993),605-607.
[11]O. M. Kuttel, O. Groening, C. Emmenegger, and L. chlapbach, S,Electron Field Emission from Phase Pure Nanotube Films Grown in a
Methane/Hydrogen Plasma, Appl. Phys. Lett.Sol.73(15)(1998), 2113.
[12]Yan Chen, Sushil Patel, Yagu Ye, David T. Shaw, and Liping Guo, Field Emission From Aligned High-Density Graphitic Nanofibers , Appl. Phys. Lett.Sol.73 (15) (1998), 2119.
[13]Z. K. Tang, H. D. Sun, J. Wang,J. Chen, and G. Li, Mono-Sized Single-Wall Carbon Nanotubes Formed in Channels of AlPO4-5 Single Crystal”, Appl. Phys. Lett.Sol.73 (16) (1998), 2287.
[14]E. Tracz, R. Scholz, and T. Borowiecki, High-resolution electron microscopy study of the carbon deposit morphology on nickel catalysts ,Appl. Catal. Sol.66(1990), 133-148 .
[15]D.J.Yang,Q.Zhang,S,F.Yoon ,Effect of oxygen and nitrogen on carbon nanotube growth using a microwave plasma chemical vapor deposition technique, Surface and Coatings Technology.Sol.167(2003), 288-291.
[16]L. Delzeit, C.V. Nguyen, R.M. Stevens, J. Han, and M. Meyyappan, Growth of carbon nanotubes by thermal and plasma chemical vapour deposition processes and applications in microscopy. Nanotechnology Sol.v.13 (2002), 280-284.
[17]G. S. Choi, Y. S. Cho, Y. S. Cho, J. B. Park, K. H. Son, and D. J. Kim, Carbon nanotubes synthesized by Ni-assisted atmospheric pressure thermal chemical vapor deposition,J. Appl. Phys. 91, 3847(2002).
[18]M. Jung, K. Y. Eun, Y. J. Baik, K. R. Lee, J. K. Shin, and S. T. Kim, Effect of NH3 environmental gas on the growth of aligned carbon nanotube in catalystically pyrolizing C2H2,Thin Solid Films.Sol.398-399(2001), 150~155.
[19]J. C. Charlier and J. P. Issi, Electronic structure and quantum transport in carbon nanotubes, Applied Physics A:Materials Science & Processing.Sol.67(1998), 79-87.
[20]M. D. Haus, G. Dresselhaus, P. Eklund, and R. Saito, Carbon nanotubes, Physics World, January(1998), 33-38.
[21]J. W. Mintmire and C. T. White, First-principles band structures of armchair nanotubes, Applied Physics A: Materials Science & Processing.Sol.67(1998), 65-69.
[22]T. W. Ebbesen, P. M. Ajayan, H. Hiura and K. Tanigaki, Purification of nanotubes, Nature.Sol.367(1994), 519-519.
[23]T. W. Ebbesen and P. M. Ajayan, Large scale synthesis of carbon nanotubes, Nature.Sol.35(1992), 220.
[24]A. Thess, R. Lee, P. Nikolaev, H. Dai, P. Petit, J. Robert, C. Xu, Y. H.
Lee, S. G. Kim, A. G. Rinzler, D. T. Colbert, G. E. Scuseria, D.
Tomanek, J. E. Fischer, and R. E. Smalley, Crystalline Ropes of Metallic Carbon Nanotubes,Science.Sol.273(1996), 483-487.
[25]R. T. K. Baker and P. S. Harries, Chemistry and Physics of Carbon,Marcel Dekker, New York.Sol.14(1978), 83-165.
[26]Y. H. Lee, S. G. Kim, and D. Tománek, Catalytic growth of single-wall carbon nanotubes: an Ab initio study, Phys. Rev. Lett.Sol.78(1997), 2393-2396.
[27]A.L.Musatov,N.A.Kiselev , Field emission from nanotube carbon layers grown by CVD process, Applied Surface Science Sol.183(2001), 111-119.
[28]J. Robertson, Electron field emission from diamond and diamond-like carbon
for field emission displays , Carbon.Sol.37(1999), 759-763
[29]柯賢文,表面與薄膜處理技術,全華科技圖書股份有限公司,台北,2005年 1月,初版。
[30] 陳熙程,以微波加熱化學氣相沉積法合成奈米碳管,國立成功大學,2000年。
[31] S.Wang et al , Effects of NH3 plasma pretreatment on the growth of carbon nanotubes, Diamond & Related Materials.Sol15(2006), 361-364.
[32]莊達人,VLSL製造技術,高立圖書有限公司,台北縣,2000年12月10日,四版。
[33] Shuxia Wang , Peng Wang , Otto Zhou , Effects of NH3 plasma pretreatment on the growth of carbon nanotubes , Diamond Related Materials,Sol.15 (2006),361-364.
[34]潘嗣文,氮在化學汽相沉積法成長具方向性奈米碳管中扮演的角色,中原大學,2005年。
[35]G. S. Choi, Y. S. Cho, Y. S. Cho, J. B. Park, K. H. Son, and D. J. Kim., Carbon nanotubes synthesized by Ni-assisted atmospheric pressure thermal chemical vapor deposition , J. Appl. Phys.Sol.91(2002), 3847.
[36]M. Jung, K. Y. Eun, Y. J. Baik, K. R. Lee, J. K. Shin, and S. T. Kim,Effect of NH3 environmental gas on the growth of aligned carbon nanotube in catalysically pytolizing C2H2,Thin Solid Films.Sol.398-399(2001), 150~155.
[37]Han, Jae-Hee; Lee, Chong Hyun; Jung, Duk-Young; Yang, Chul-Woong; Yoo, Ji-Beom; Park, Chong-Yun; et. al , NH3 effect on the growth of carbon nanotubes on glass substrate in plasma enhanced chemical vapor deposition , Thin Solid Films 409 (2002) 120-125.
[38]C Ducati,I Alexandru, Temperature selective growth of carbon nanotubes by chemical vapor d eposition ,Journal of Applied Physics.Sol.15(2002).
[39]來俊帆,以熱裂解法成長奈米碳管機制的研究,中原大學,2004年。
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關論文