跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.82) 您好!臺灣時間:2024/12/14 08:33
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:何德川
研究生(外文):HoTe-Chuan
論文名稱:液態油品撞擊高溫表面之高速影像分析研究
論文名稱(外文):High Speed Photographic Analysis and Studies for the Liquid Oil Impacting on a High Temperature Surface
指導教授:張育斌周煥銘周煥銘引用關係
學位類別:碩士
校院名稱:崑山科技大學
系所名稱:機械工程研究所
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2006
畢業學年度:94
論文頁數:146
中文關鍵詞:黏度高速攝影高溫表面液滴撞擊
外文關鍵詞:high temperature surfaceimpacthigh speed photographyviscositydroplet
相關次數:
  • 被引用被引用:6
  • 點閱點閱:785
  • 評分評分:
  • 下載下載:20
  • 收藏至我的研究室書目清單書目收藏:0
本研究採用實驗方式探討液態油品撞擊高溫表面的問題,藉由高速攝影所擷取的瞬間影像來了解液滴撞擊之運動行為,以助液滴撞擊過程的動力特性研究。實驗對象為潤滑油、燃料、純水等三種不同特性之工作流體(六種油品),實驗過程的控制參數為液滴性質、表面溫度。
本研究先建立液滴撞擊之先前評估設備,經由改變液滴撞擊高溫表面之溫度與不同油品之黏度等參數,特別著重於動態尺度變化與撞擊後液滴變化型態之分析研究。實驗結果顯示:一、表面溫度在室溫下之情況,液滴撞擊後會產生擴散、回縮、震盪與穩定等純機械撞擊的效應。二、表面溫度在該液滴之沸點(含)以下的情況,液滴撞擊後會產生擴散、回縮、向上拉升、整體震盪或沸騰等機械撞擊效應與溫度效應。三、表面溫度在明顯高於該液滴之沸點的情況,由於溫度越高表面張力越小,以致高溫作用使壓差大於表面張力,因此,液滴撞擊後會產生擴散、沸騰、飛濺、瞬間炸開、噴射成數以萬計的微小液滴與彈跳等機械撞擊效應與高溫效應。四、黏度與表面張力越大,則擴散到最大直徑之值就越小,表面張力越大,回縮至最小直徑之值也越小。五、表面溫度越高,炸開之小液滴之直徑就越小;直徑越大其所需之加熱能量越大,因此彈跳週期就越長。當表面溫度增加,其彈跳高度越高,彈跳週期就越長。六、在相同溫度而不同油品黏度的情況,黏度越低擴散至最大直徑越大,而且回縮至最小直徑也越小,黏度差異越大,擴散至最大直徑或回縮至最小直徑之差異性也越大。以回縮趨勢而言,黏度低的比黏度高的回縮趨勢明顯。然而相同油品黏度在不同溫度下的直徑變化,則以溫度較高者變化較大。
The phenomena of the liquid oil droplet impacting on a high temperature surface were studied experimentally in this paper. By using the high-speed camera with the photoflood system, the kinematic modes and the dynamic properties of the above impacting process can be investigated in detail. Moreover, six kinds of fluids (such as oils, fuels and the pure water) were selected as the testing materials in this study. The major parameters were the droplet properties and the surface temperature.
First of all, the previous testers were established to appraise the effects of the surface temperatures and the oil viscosities on the impacting process. Secondly, the dynamic variations for the micro size of the liquid droplet during the impacting process were especially analyzed systematical. Finally, the experimental results of this paper can be concluded as followings: (1) the variations of the impacting process under the average room temperature can be classified into four states: spreading, recoiling, oscillating and steady states. They showed the pure mechanical impacting effects. (2) the variations of the impacting process for the surface temperature which was smaller than the boiling point of the fluid can be classified as: spreading, recoiling, draging up, oscillating or boiling states. The above results were influenced by both of the mechanical impacting and the heating effects. (3) the variations of the impacting process for the surface temperature exceeded the boiling point of the fluid can be classified as: spreading, boiling, spattering, flashy explosion, spraying droplets and spring. The mechanical impacting and the high temperature effects both caused the above results. Moreover, the above results can be reasonally explained by that the surface tension was smaller than the pressure difference under the high temperature. (4) the maximum diameter of the droplet decreased with increasing the viscosity and the surface tension. Moreover, the minimum diameter also decreased with increasing the surface tension. (5) the diameter of the spraying droplet decreased with increasing the surface temperature. Moreover, the spring period increased with increasing the diameter of the spraying droplet or the surface temperature. (6) the maximum diameter of the droplet increased and the minimum diameter decreased with decreasing the viscosity of the fluids. The trend of recoiling was significantly for the low viscosity. However, the variations of the droplet diameter were severe for the high temperature cases.
中文摘要------------------------------------------------------------------------------i
英文摘要----------------------------------------------------------------------------iii
目錄-----------------------------------------------------------------------------------v
表目錄------------------------------------------------------------------------------viii
圖目錄-------------------------------------------------------------------------------ix
符號說明---------------------------------------------------------------------------xiv
一、 緒論--------------------------------------------------------------------1
1.1 前言---------------------------------------------------------------------1
1.2 文獻回顧---------------------------------------------------------------2
1.3 研究動機與目的----------------------------------------------------17
二、 研究設備--------------------------------------------------------------19
2.1 高速影像攝取系統------------------------------------------------- 19
2.1.1 機器介紹-----------------------------------------------------19
2.1.2 實驗裝備-----------------------------------------------------19
2.1.3 操作步驟-----------------------------------------------------19
2.1.4 儀器注意事項---------------------------------------------- 20
2.2 加熱栓與高溫表面------------------------------------------------- 20
2.2.1 加熱栓--------------------------------------------------------20
2.2.2 高溫表面-----------------------------------------------------21
2.3 液滴產生裝置-------------------------------------------------------21
2.4 加熱控制箱與溫度顯示器---------------------------------------- 22
三、 研究方法與實驗步驟-----------------------------------------------28
3.1 研究方法------------------------------------------------------------- 28
3.2 實驗步驟------------------------------------------------------------- 28
四、 實驗結果與討論---------------------------------------------------33
4.1 液滴撞擊室溫下乾平面的變化----------------------------------33
4.1.1 純水液滴撞擊室溫下銅表面的變化--------------------33
4.1.2 柴油液滴撞擊室溫下銅表面的變化--------------------34
4.1.3 汽油液滴撞擊室溫下銅表面的變化--------------------35
4.1.4 基礎油HN液滴撞擊室溫下銅表面的變化-------------36
4.1.5 基礎油LN液滴撞擊室溫下銅表面的變化------------37
4.1.6 基礎油50P液滴撞擊室溫下銅表面的變化------------37
4.2 液滴撞擊沸點(含)以下乾平面的變化--------------------------46
4.2.1 純水液滴撞擊其沸點(含)以下銅表面的變化---------46
4.2.2 柴油液滴撞擊其沸點(含)以下銅表面的變化---------47
4.2.3 汽油液滴撞擊其沸點(含)以下銅表面的變化--------48
4.2.4 HN液滴撞擊其沸點(含)以下銅表面的變化-----------49
4.2.5 LN液滴撞擊其沸點(含)以下銅表面的變化------------50
4.2.6 50P液滴撞擊其沸點(含)以下銅表面的變化-----------52
4.3 液滴撞擊溫度明顯高於沸點之乾平面的變化----------------74
4.3.1 純水液滴撞擊溫度明顯高於其沸點銅表面的變化74
4.3.2 汽油液滴撞擊溫度明顯高於其沸點銅表面的變化75
4.4 油品黏度之效應-----------------------------------------------------83
4.5 油品溫度之效應-----------------------------------------------------96
4.6 油品黏度與溫度之耦合效應與討論---------------------------109
4.6.1 相同油品在不同溫度下之效應-------------------------109
4.6.2 相同溫度而油品不同之效應----------------------------112
五、 結論與未來展望----------------------------------------------------137
5.1 結論------------------------------------------------------------------137
5.2 未來展望------------------------------------------------------------138

參考文獻--------------------------------------------------------------------------140

作者簡介--------------------------------------------------------------------------146
[1] A. M. Worthington, “On the Forms Assumed by Drops of Liquids Falling Vertically on a Horizontal Plate,” Proc. R. Soc. London A, Vol. 25, 1867, pp.261-271.
[2] A. M. Worthington, “On Impact with a Liquid Surface,” Proc. R. Soc.
London A, Vol. 34, 1883, pp. 217-230.
[3] A. M. Worthington, “A Study of Splashes,” London: Longman and Green,1908; reprinted, New York: Macmillian, 1963.
[4] A. L. Yarin, and D. A. Weiss, “Impact of Drops on Solid Surfaces:
Self-Similar Capillary Waves, and Splashing as a New Type of Kinematic Discontinuity,” J. Fluid Mech., Vol. 283, 1995, pp. 141-173.
[5] M. Pasandideh-Fard, Y. M. Qiao, S. Chandra, and J. Mostaghimi, “Capillary Effects during Droplet Impact on a Solid Surface,” Phys. Fluids, Vol. 8(3), 1996, pp. 650-659.
[6] L. Leger, and J. F. Joanny, “Liquid Spreading,” Rep. Prog. Phys., 1992, pp.431-486.
[7] J. Fukai, and Z. Zhao, and D. Poulikakos, and C. M. Megaridis, and
O. Miyatake, “Modeling of the Deformation of a Liquid Droplet Impinging Upon a Flat Surface,” Phys. Fluids A, Vol. 5 (11), 1993, pp. 2588-2599.
[8] X. Zhang, and O. A. Basaran, “Dynamic Surface Tension Effects in Impact of a Drop with a Solid Surface,” J. Colloid Interface Sci., Vol. 187, 1997, pp. 166-178.
[9] C. Pozrikdis, “The Deformation of a Liquid Drop Moving Normal to a Plane Wall,” J. Fluid Mech., Vol. 215, 1990, pp. 331-363.
[10] N. Hatta, and H. Fujimoto, and H. Takuda, “Deformation Process of a
Water Droplet Impinging on a Solid Surface,” Trans. of the ASME, Vol. 117, 1995, pp. 394-401.
[11] M. Marengo, and C. Tropea,“Analysis of Impact of Droplets on Horizontal Surfaces,”Exp. Fluids, Vol. 25, 2002, pp. 503-510.
[12] C. Humberto, A.M. Kubitzek, and O. Frank, “Dynamic Processes Occurring During the Spreading of Thin Liquid Films Produced by Drop Impact on Hot walls,”International Journal of Heat and Fluid Flow, 20, 1999, pp. 470-476.
[13] B. S. Gottfried, C. J. Lee, and K. J. Bell, “The Leidenfrost Phenomenon: Film Boiling of Liquid Droplets on a Flat Plat,” Int. J. Heat Mass Transfer, Vol. 9, 1966, pp. 1167-1187.
[14] K. Ander, N. Roth, and A. Frohn, “The Velocity Change of Ethanol Droplets during Collision with a Wall Analyzed by Image Processing,” Exp. Fluids, Vol. 15, 1993, pp. 91-96.
[15] Y. M. Qiao, and S. Chandra,“Boilinmg of Droplets on a Host Surface in Low Gravity,”Int. J. Heat Mass Transfer,39, 1996, pp.1379-1393.
[16] 洪姮娥, 許榮富, 普通物理實驗, 國立編譯館主編, 合記圖書出版社出版, 台北, 1996初版, pp. 255-258.
[17] 林榮盛, 潤滑學, 全華科技圖書公司, 台北, 1989二版, pp. 70-89.
[18] 方顥儒, “落下液滴與固體表面靜止液滴間撞擊特性之研究,” 國立成功大學系統及船舶機電工程研究所碩士論文, 2004.
[19] B. L. Scheller, and D. W. Bousfield, “Newtonian Drop Impact with a Solid Surface,” AIChE Journal, Vol. 41, No. 6, 1995, pp. 1357-1367.
[20] J. Fukai, Y. Shiiba, T. Yamamoto, and O. Miyatake, “Wetting Effects on the Spreading of a Liquid Droplet Colliding With a Flat Surface: Experiment and Modeling,” Phys. Fluids, Vol. 7(2), 1995, pp. 236-247.
[21] C. A. Miller, and P. Neogi, “Interfacial Phenomena--Equilibrium and Dynamic Efects,” Surfactant Science Series, Vol. 17, 1985.
[22] T. Gerardo, and S. Julian, “Mathematical Modeling of the Isothermal
Impingement of Liquid Droplets in Spraying Processes,” Met. Trans. B, Vol.22B, 1991, pp. 901-914.
[23] M. Rein,“Phenomena of Liquid Droplet Impact on Solid and Liquid Surfaces,”Fluid dynamics Research, Vol. 12, 1993, pp. 61-93.
[24] T. Mao, and D. C. S. Kuhn, and H. Tran,“Spread and Rebound of Liquid Droplets upon Impact on Flat Surfaces,”AIChE J., Vol. 43(9), 1997, pp. 2169-2179.
[25] Y. Gu, and D. Li, “Liquid Drop Spreading on Solid Surfaces at Low Impact Speeds,” Colloids and Surfaces A:Physicochemical and Engineering Aspects, Vol. 163, 2000, pp. 239-245.
[26] H. Fujimoto, T. Ogino, H. Takuda, and N. Hatta, “Collision of a Droplet With a Hemispherical Static Droplet on a Solid,” Int. J. Multiphase Flow, Vol. 27, 2001, pp. 1227-1245.
[27] C. Mundo, M. Sommerfeld, and C. Tropea, “Droplet-Wall Collisions: Experimental Studies of the Deformation and Breakup Process,” Int. J. Multiphase Flow, Vol. 21, No. 2, 1994, pp. 151-173.
[28] C. D. Stow, and M. G. Hadfield,“An Experimental Investigation of Fluid Flow Resulting from the Impact of a Water Drop with an Unyielding Dry Surface,”Proc. R. Soc. London A, Vol. 373, 1981, pp. 419-441.
[29]B.Prunet-Foch,F. Legay, M. Vignes-Adler, and C. Delmotte,“Impacting Emulsion Drop on a Steel Plate:Influence of the Solid Substrate,” Journal Colloid Interface Sci., Vol. 199, 1998, pp. 151-168.
[30] S. Chandra, and C.T. Avedisian,“On the Collision of a Droplet with
a Solid Surface,”Proc. R. Soc. London, Ser. A. Vol. 432, pp.13-41, 1991.
[31] 黃文欽, “液滴與液膜交互作用之研究,” 國立台灣大學應用力學研究所碩士論文, 2000.
[32] 簡儒文, “雙液滴撞擊液膜與界面張力計之實驗初探,” 國立台灣大學應用力學研究所碩士論文, 2002.
[33] 李祠澐, “壓電式液滴產生器設計與微液滴碰撞實驗,” 國立台灣大學機械工程學研究所碩士論文, 2002.
[34] 方崇成, “噴霧冷卻現象之研究,” 國立中山大學機械與機電工程學系碩士論文, 2003.
[35] 楊鴻進, “液滴撞擊之實驗研究及現象分析,” 國立台灣大學機械工程學研究所碩士論文, 2003.
[36] 廖偉辰, “牛頓流體與非牛頓流體液滴碰撞之研究,” 國立中正大學化學工程研究所碩士論文, 2003.
[37] 蔡銘煌, “液滴撞擊半圓形液膜之現象觀察與研究,” 國立台灣大學機械工程學研究所碩士論文, 2003.
[38] 張育斌,“空氣輔助噴射結構之影像分析,”國立成功大學機械工程研究所碩士論文, 1994.
[39] K. Nakanishi , T. Hirano, T. Inoue and S. Ohigashi,“ The Effects of Change Dilution on Combustion and its Improvement – Flame Photograph Study, ”SAE Paper, No.750054, 1975.
[40] R. D. Reitz, and F. V. Bracco, “ On the Dependence of Spray Angle and Other Spray Parameters on Nozzle Design and Operating ondition, ”SAE Paper 790494, 1979.
[41] T. Kamimoto, H. Kobayashi, and S. Matsuoka, “ A Big Size Rapid Compression Machine for Fundamental Studies of Diesel Combustion, ”SAE 811004, SAETrans. , vol.90 , 1981.
[42] K. R. Brown , I. M. Partridge , and G. Greeves, “ Fuel Property Effects on Fuel/Air Mixing in an Experimental Degine, ”SAE Paper 860223, 1986.
[43] S. Kato, ands. S. Onishi, “New Mixture Formation Technology of Direct Fuel Injection Stratified Combustion on the Projection on a Wall, ”SAE Paper 871689, 1987.
[44] K. J. Colella, E. N. Balles, J. A. Ekchian, W. K. Cheng, and J. B. Heywood, “A Rapid Compression Machine Study of the Influence of Charge Temperature on Diesel Combustion, ”SAE Paper 870587, 1987.
[45] N. Katsura, M. Saito, J. Senda and H. Fujimoto, “ Characteristics of a Diesel Spray Impinging on a Flat Wall, ”SAE Paper, No. 890264, 1989.
[46] D. Laforiga, B. Chehroudi and F. V. Bracco, “ Structure of Sprays from Fuel Injectors – Part ІІ , the Ford DFI – 3 Fule Injector, ”SAE 890313, 1989.
[47] E. R. Karimi, “High Speed Photography of Fuel Spray and Combustion Events in a Production Diesel Engine and Combustion Bomb , ”J. Power Engineering, Vol. 203, 1989.
[48] H. Tanabe, and G. T. Sato, “Experimental Study on Unsteady Wall Impinging Jet, ”SAE Paper, No. 900605, 1990.
[49] H. Tanabe, Y. Kitaura, G. T. Sato, S. Kato and S. nishi, “Experimental Study on Unsteady Jet Impinging on the Projection on a Wall, ”SAE Paper 900607, 1990.
[50] S. Kato, S. Onishi, and S. Kobayashi, “Direct Injection Stratified Charge Engine by Impingement of Fuel Jet (OSKA) – Performance and Combustion Characteristics, ”SAE Paper 900608, 1990.
[51] D. G. Talley, Y. C. Lin , and Morris, “2 – D Laser Sheet Visualization of a Pulsed Hollow Cone Spray : Stagnant and Simuization Two – Stroke Engine Environments, ”Atomization and Sprays, Vol. 1, 1991, pp. 89 ~ 112.
[52] Lloyd I. Osipow, 界面化學, 高文弘, 周賢孟譯, 國興出版社發行, 新竹, 1983三版, pp.9.
[53] 潘欽, 沸騰熱傳與雙相流, 國立編譯館主編, 俊傑書局發行, 台北, 2001初版, pp.115~117.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top