跳到主要內容

臺灣博碩士論文加值系統

(44.220.251.236) 您好!臺灣時間:2024/10/11 03:17
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:李宗岳
研究生(外文):Tzung-Yue Lee
論文名稱:以溶膠-凝膠法研製透明無鹵素耐燃塗膜之研究
論文名稱(外文):Studies on the Transparent and Halogen-Free Flame-Retardance Film via the Sol-gel Method
指導教授:林榮顯
指導教授(外文):Rong-Hsien Lin
學位類別:碩士
校院名稱:國立高雄應用科技大學
系所名稱:化學工程系碩士班
學門:工程學門
學類:化學工程學類
論文種類:學術論文
論文出版年:2006
畢業學年度:94
語文別:中文
論文頁數:109
中文關鍵詞:溶膠-凝膠法奈米顆粒LOI穿透度
外文關鍵詞:sol-gel methodnanoparticleLOItransmittance
相關次數:
  • 被引用被引用:4
  • 點閱點閱:764
  • 評分評分:
  • 下載下載:99
  • 收藏至我的研究室書目清單書目收藏:1
本研究利用溶膠-凝膠法(sol-gel process) ,將烷氧銻化合物Antimony (III) ethoxide、醋酸銻Antimony(III) acetate、烷氧磷化合物Triethyl phosphate、烷氧矽氧化合物3-glycidoxypropyltrimethoxysilan 與乙基鎂Magnesium ethoxide,經水解(hydrolysis) 縮合(condensation)後,而得無機顆粒(氧化銻、氧化磷、氧化矽與氧化鎂)之膠液(gel)。藉由控制不同的水解縮合時間,以便控制無機顆粒的大小。而將所配置無機奈米顆粒之氧化銻、氧化磷、氧化矽與氧化鎂添加入於環氧樹脂之溶液(sol)內,進而得樹脂塗膜。其無機顆粒的尺寸,可利用奈米粒徑分布測定儀測定其粒徑之分佈,及掃描式電子顯微鏡(scanning electron microscopy;SEM)觀察其粒徑的大小。而無機物是否有結晶性可利用X-ray 繞射儀 (X-ray diffraction)觀察。其複合材的難燃性質,利用極限氧指數測試儀(limited oxygen index;LOI)進行測試。其材料的穿透度可由紫外光譜儀(UV)測試。而經由sol-gel所製成的無機顆粒的尺寸都達到奈米尺寸。在結晶性方面,唯有以醋酸銻經水解/縮合後為Sb2O3的晶型,其它化合物經過水解/縮合後均為無晶型物質。在難燃性質方面,氣相難燃劑Sb系統其LOI值平均值為34,固相難燃劑Si或P系統其LOI值平均為29,液相難燃劑Mg系統的LOI值為28。其中Si原子扮演最佳的協同難燃劑,與其他難燃劑相互配合使用,都可以達到較佳的難燃效果。
因無機顆粒為奈米級尺寸,所以不具有散射光線之效果,因此其基材透光性良好,且穿透度(transmittance)都可達到80%以上。
Sol-gel method was applied in this project. Metal alkoxides, such as antimony(III) ethoxide (SbOEt) , antimony(III) acetate (Sb(OAc)3) , triethyl phosphate(TEP), 3-glycidoxypropyltrimethoxysilane (GPOS) and magnesium ethoxide (MgOEt) underwent hydrolysis and condensation at room temperature using specified conditions. The nanoparticles of Sb2O3, Sb2O5, P2O5, SiO2 and Mg(OH)2 were therefore formed in a gel state. The nanoparticles of Sb2O3, Sb2O5 , P2O5, SiO2 and Mg(OH)2 in the gel state was subsequently added into the designed resin in a solution state, and cast into the nanocomposite hybrids. The particle sizes can be controlled by the reaction times, and measured by the scanning electron microscopy (SEM) and nanoparticle analysizer. Microstructure and the crystallinity of the inorganic cluster was investigated by the X-ray diffraction patterns. Small amount of nanoparticles of flame retardant is expected to show an optimum flame-retardation, due to their high dispersity in the material.. The flame-retardance was examined using limited oxygen index (LOI) instrument. Generally, coating film become opaque when inorganic filler of flame-retardants (Sb2O3, Sb2O5 , P2O5 ,SiO2 and Mg(OH)2) are incorporated. If the inorganic particles in the film is in nano size, appearance of the film is transparent. The transmittance of composites were examined using UV spectra, and the transmittance of all the samples are above 80%.
中文摘要 i
Abstract ii
總目錄 iii
流程目錄 v
表目錄 vi
圖目錄 vii

第一章 燃燒基本原理 1
1.1.物質之燃燒性 1
1.2高分子之燃燒機構 2
1.2.1 影響高分子材料之燃燒性之因素 3
1.3難燃劑的分類 4
1.3.1高分子之難燃機構原理 5
1.4協同作用(synergism) 7
1.5環氧樹脂(epoxy resin)簡介 8
1.6有機-無機奈米複合材料(organic-inorganic nanocomposite) 9
1.7難燃材料之測試方法 10

第二章 溶膠-凝膠基本原理及文獻回顧 12
2.1 溶膠-凝膠(sol-gel)法 12
2.2 以溶膠-凝膠(sol-gel)法製備奈米混成材料之基本原理 12
2.3 溶膠-凝膠法在有機-無機複合材料上的發展 15
2.4 研究動機及目的 16

第三章 計畫之研究方法與步驟 17
3.1實驗藥品 17
3.2實驗儀器 20
3.3有機/無機奈米混成材料之製備 21
3.3.1 Part I. Gas flame-retardance (Sb system) 21
3.3.2 Part II. Solid flame-retardance (P (and, or Si ) system) 22
3.3.2-1單成分系統 22
3.3.2-2雙成分系統 22
3.3.3 Part III. Solid -gas flame-retardance (Sb and P (and, or Si) system) 23
3.3.3-1雙成分系統 23
3.3.3-2参成分系統 23
3.3.4 Part IV. Intumescent flame retardant ( P+ foaming agent) 23
3.3.5 Part V. Liquid flame-retardance (Mg system) 24
3.3.6 Part VI. Solid-liquid flame-retardance (Mg, P(and, or Si) system) 24

第四章 實驗結果與分析 25
Part I:Gas flame-retardance 25
4.1 Part I -1市售Sb、Sb2O3與Sb2O5之複合材料 25
4.2 Part I -2 (synthesized Sb system) 26
4.2.1利用三乙基銻(antimony (III) ethoxide, Sb (OEt)3)製備之複合材料 26
4.2.2利用醋酸銻(antimony (III) acetate Sb(OAc)3) 製備之複合材料 27

Part II. Solid flame-retardance (P (and, or Si ) system) 29
4.3單成分系統 29
4.3.1 P系統之複合材料 29
4.3.2 Si系統之複合材料 31
4.4 兩成分系統(P和Si系統之複合材料) 31

Part III. Solid-gas flame-retardance (Sb and P (and, or Si ) system) 33
4.5兩成分系統 33
4.5.1 Sb和P系統之複合材料 33
4.5.2 Sb和Si系統之複合材料 33
4.6三成分系統 (Sb、P和Si系統之複合材料) 34

Part IV. Intumescent flame retardant (P+ foaming agent) 35
4.7環氧樹脂/P+ foaming agent系統複合材料之難燃性質分析及外觀 35

Part V. Liquid flame-retardance (Mg system) 37
4.8 市售Mg及合成Mg之複合材料 37

Part VI. Solid-liquid flame-retardanc (Mg, and (P or Si) 38
4.9兩成分系統 38
4.9.1環氧樹脂/Mg和P系統之複合材料 38
4.9.2環氧樹脂/Mg和Si系統之複合材料 39
第五章 結論 41
參考文獻 106
1.黃素珍, 難燃市場及最新動向, 化工資訊, No 7, vol 6,40~61(1993)
2.廖如仕, 無鹵難燃材料的發展, 永續產業發展, No 17, 30~39 (2004)
3.沈永清, 張信貞, 莊學平, 張榮樹, 化工資訊, No 2, vol 9 , 15~32(1995)
4.Jurgen Troitzsch, International Plastics Flammability Handbook 2nd edition, Hanser Publisher, Munich Vienna and New York,11~231,(1990)
5.謝正悅, 王春山, 新穎含磷難燃高分子之合成、鑑定與性質探討,國立成功大學博士論文 p10~12
6.E. M. Pearce, R. Liepins, Environmental Health Perspectives, Vol.11, 59~69 (1975)
7.G. F. Levchik, S. V. Levchik, A. I. Lesnikovich, Polymer Degradation and Stability, Vol. 54, 361~363 (1997)
8.P. A. Cusach, M. S. Heer, A. W. Monk, Polymer Degradation and Stability, Vol.58, 229~237 (1997)
9.L. Yu,W. Wang, W. Xiao, Polymer Degradation and Stability, Vol. 86,69~73 (2004)
10.N. Tigau, V. Ciupina, G. Prodan, G. I. Rusu, E. Vasile, Journal of Crystal groeth, Vol. 269, 392~400 (2004)
11.P. Roma, M. P. Luda, G. Camino, Polymer Degradation and Stability,Vol. 64, 497~500 (1999)
12.T. Lopez , P. Bosch, M. Asomoza, R. Gomez, E. Ramos, Materials Letters Vol. 31, 311~316 (1997)
13.M. Longerey, J-M. L. cuesta, P. Gaudon, A. Crespy, Polymer Degradation and Stability, Vol. 64, 489~496 (1999)
14.J. Kaspersma, C. Doumen, S. Munro, A. M. Prins, Polymer Degradation and Stability, Vol.77, 325~331 (2002)
15.H. Dvir, M. Goldraich, M. Gottlieb, S. Daren, J. L. Cuesta, Polymer Degradation and Stability, Vol. 74, 465~474 (2001)
16.A. D. La Rosa, A. Recca, J. T. Carter, P. T. McGrail, Polymer, Vol.40, 4093~4098 (1999)
17.J. T. Yeh, S. H. Hsieh, Y. C. Cheng, M. J. Yang, K. N. Chen, Polymer Degradation and Stability, Vol. 61, 399~407 (1998)
18.G. H. Hsiue, Y. L. Liu, J. Tslao, Journal of Applied Polymer Science,Vol. 78, 1~7 (2000)
19.J. Deng, S. Zhu, W. Shi, Journal of Applied Polymer Science, Vol. 94, 2065~2070 (2004)
20.M. Sain, S. H. Park, F. Suhara, S. Law, Polymer Degradation and Stability, Vol. 83, 363~367 (2004)
21.R. N. Rothon, P. R. Hornsby, Polymer Degradation and Stability, Vol. 54, 383~385 (1996)
22.U. Hippi, J. Mattila, M. Korhonen, J. Seppala, Polymer, Vol. 44,1193~1201 (2003)
23.J. Jang, H. Chung, M. Kim, H. Sung, Polymer Testing, Vol.19, 269~279 (2003)
24.U. Braun, B. Schartel, Macromol Chem and Phys, Vol.205, 2185~2196 (2003)
25.T. Lopez, M. E. Manrıquez, R. Gomez, A. Campero, M. E. Llanos, Materials Letters, Vol. 46, 21~29 (2000)
26.L. Qiu, R. Xie, P. Ding, B. Qu, Composite Structures ,Vol. 62, 391~395 (2003)
27.Z. Li, B. Qu, Radiation Physics and Chemistry, Vol. 69, 137~141(2004)
28.Q. Fu, C. B. Cao, H. S. Zhu, Thin Solid Films, Vol. 348, 99~102(1999)
29.M. Lewin, S. M. Atlas, E. M. Pearce, “Flame-Retardant Polymeric Materials”, Plenum Press, New York, Vol. 2, 133~158 (1978)
30.S. J. Chang, Y. C. Sheen, R. S. Chang, F. C. Chang, Polymer Degradationand Stability, Vol. 54, 365~371 (1996)
31.M. Lewin, S. M. Atlas, E. M. Pearce, “Flame-Retardant Polymeric Materials”, Plenum Press, New York, Vol. 2, 43~61 (1978)
32.S. Wanga, Y. Hua, R. Zonga, Y. Tanga, Z. Chenb, W. Fana, Applied Clay Science Vol. 25, 49~55 (2004)
33.H. Sato, K. Kondo, S. Tsuge, H. Ohtani, N. Sato, Polymer Degradation and Stability, Vol. 62, 41~48 (1998)
34.H. Dvir, M. Goldraich, M. Gottlieb, S. Daren, J. L. Cuesta, Polymer Degradation and Stability, Vol. 74, 465~474 (2001)
35.W. Li, L. Luo, H. Yamashita, J. A. Labinger, M. E. Davis, Microporous and Mesoporous Materials, Vol. 37, 57~65 (2000)
36.V. J. F. Jr, A. S. Araujo, V. M. Fonseca, N. S. Fernandes, D.R.Silva,Thermochimica Acta, Vol. 392, 71~77 (2002)
37.B. Toure, J. M. L. Cuesta, M. Longerey, A. Crespy, Polymer Engineering and Science, Vol. 54, 345~352 (1996)
38.X. L. Xie, R. K. Y. Li, Q. X. Liu, Y. W. Mai, Polymer, Vol 45, 2793~2802 (2004)
39.M. M. Hirschler, Eur. Polym. J, Vol. 19, 121~129 (1983)
40.Q. Li, P. Jiang, Z. Su, P. Wei, G. Wang, X. Tang, Journal of Applied Polymer Science, Vol. 96, 854~860 (2005)
41.S. Ono, T. Funato, Y. Inoue, T. Munechika, T. Yoshimura, H. Morita, Journal of Chromatography, Vol. 815, 197~204 (1998)
42.S. H. Chiu, W. K. Wang, Polymer, Vol. 39, 1951~1955 (1998)
43.K. Mequanint, R. Sanderson, Polymer, Vol.44, 2631~2639 (2003)
44.A. I. Balabanovich, Thermochimica Acta Vol. 435, 188~196 (2005)
45.T. S. Leu, C. S. Wang, Journal of Applied Polymer Science, Vol. 92,410~417 (2004)
46.C. S. Wu, Y. L. Liu, Y. S. Chiu, Polymer, Vol. 43, 4277~4284(2002)
47.P. Lv, Z. Wang, K. Hu, W. Fan, Polymer Degradation and Stability,Vol. 90, 523~534 (2005)
48.H. Liang, W. Shi, M. Gong, Polymer Degradation and Stability,Vol. 90, 1~8 (2005)
49.S. Duquesne, S. Magnet, C. Jama, R. Delobel, Polymer Degradation and Stability, Vol. 88, 63~69 (2005)
50.Y. L. Liu , G. H. Hsiue , Y. S. Chiu, Journal of Polymer Science Part A: Polymer Chemistry, Vol. 35, 565~574 (1997)
51.C. Lung Chiang, C-C. M. Ma, European Polymer Journal, Vol. 38, 2219~2224 (2002)
52.G. H. Hsiue, Y. L. Liu, H. H. Liao, Journal of Polymer Science: Part A: Polymer Chemistry, Vol. 39, 986~996 (2001)
53.M. Zanetti, L. Costa, Polymer, Vol. 45, 4367~4373 (2004)
54.M. Messori, M. Toselli, F. Pilati, E. Fabbri, P. Fabbri, S. Busoli,L. Pessori, S. Nannarone, Polymer, Vol. 44, 4463~4470(2003)
55.Y. L. Liu, Y. L. Lin, C. P. Chen, R. J. Jeng, Journal of Applied Polymer Science, Vol. 90, 4047~4053 (2003)
56.Y. L. Liu, C. S. Wu, Y. S. Chiu, W. H. Ho, Journal of Polymer Science: Part A: Polymer Chemistry, Vol. 41, 2354~2367 (2003)
57.Z. Wang, Y. Hu, Z. Gui, R.Zong, Polymer Testing, Vol. 22, 533~538(2003)
58.L. Zong, L. C. Kempel, M. C. Hawley, Polymer, Vol. 46, 2638~2645(2005)
59.L. Matejka, K. Dusek, I. Dobas, Polymer Bulletin, Vol. 14, 309~315(1985)
60.F. Surive, T. M. Lam, J. P. Pascault, C. Mai, Macromolecules, Vol.25, 5742~5751 (1992)
61.C. J. T Landry., B. K. Coltrain, B. K. Brady, Polymer, Vol. 33, 1486~1495 (1992)
62.W. Zhou, J. H. Dong, K. Y. Qiu, Y. Wei, Journal of Polymer Science: Part A: Polymer Chemistry, Vol. 36, 1607~1613 (1998)
63.L. Matejka, K. Dusek, J. Plestil, J. Kriz, F. Lednicky, Polymer, Vol. 40, 171~181 (1998)
64.D. Tian, P. H. Dubois, R. Jerome, Journal of Polymer Science: Part A: Polymer Chemistry, Vol. 35, 2295~2309 (1997)
65.P. Hajji, L. David, J. F. Gerard, J. P. Pascault, G. Vigier, Journal of Polymer Science: Part B: Polymer physiatrics, Vol. 37,3172~3187 (1999)
66.S. K. Rajaraman, W. A. Mowers, J. V. Crivello, Macromolecules, Vol. 32, 36~47 (1999)
67.X. Y. Shang, Z. K. Zhu, J. Yin and X. D. Ma, Chem. Mater, Vol. 14,71~77 (2002)
68.J. D. Mackenzie, Y. J. Chung, Y. Hu, J. Non-Cryst. Solids. Vol. 148,271~279 (1992)
69.Z. H. Huang, k. y. Qiu, Polymer, Vol. 38, 521~526 (1997)
70.Z. H. Huang, k. y. Qiu, Polym. Bull, Vol. 35, 607~613 (1996)
71.J. S. Anand and S. C. Shit, Popular Plastics and Packaging, Vol. 45,45~47 (1995)
72.G. L. Wilkes, B. Orler and H. H. Huang, Polym. Bul, Vol. 14, 557~564 (1985)
73.L. H. Lee, W. C. Chang and W. C. Liu, J. Polym. Sci. Part A: Polym.Chem. Vol. 40, 1560~1571 (2002)
74.C. J. Brinker, G. W. Scherer, J. Non-Cryst. Solids, Vol. 70, 301~322(1985)
75.D. R. Ulrich, Chemtech April, 242~249 (1988)
76.B. E. Yoldas, J. Non-Cryst. Solids, Vol. 63, 145~154 (1984)
77.R. A. Assink, B. D. Kay, J. Non-Cryst. Solids, Vol. 99, 359~370(1988)
78.R. Aelion, A. Loebel, F. Eirich, J. Am. Chem. Soc, Vol. 72, 5705~5712 (1950)
79.C. J. Brinker, J. Non-Cryst. Solid, Vol. 100, 31~50 (1988)
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top