跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.84) 您好!臺灣時間:2024/12/04 12:21
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:李健發
研究生(外文):Chien-Fa Lee
論文名稱:白光混溶高分子電激發光元件特性研究
論文名稱(外文):Prepared of White Electroluminescent Device Using Polymer Blends
指導教授:楊素華楊素華引用關係
指導教授(外文):Su-Hua Yang
學位類別:碩士
校院名稱:國立高雄應用科技大學
系所名稱:電子與資訊工程研究所碩士班
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2006
畢業學年度:94
語文別:英文
論文頁數:92
中文關鍵詞:混溶摻合
外文關鍵詞:PLEDElectroluminescentPolymerFörster energy transfer
相關次數:
  • 被引用被引用:0
  • 點閱點閱:654
  • 評分評分:
  • 下載下載:9
  • 收藏至我的研究室書目清單書目收藏:0
最近幾年,使用混溶摻合法製造單一層透過福斯特能量轉換機制的白光發射 PLED元件吸引許多學者的研究。混溶摻合法經由能量轉換介於主客體間,其摻雜控制只需微量的摻合物就可達成。在顏色的控制可透過摻合物的比例來調整。在這篇研究論文,藉由使用PVK為主體,使用激發能量經由能量轉換把能量從PVK傳到客體的OPA30087及MEH-BP-PPV,而PVK的藍光到MEH-BP-PPV的紅光,其範圍從400到500 nm,此為白光的範圍,這要歸因於不完全的能量轉換,這是一個形成白光的重要因素,在這篇論文,我們發現電激發光元件,在雙色混合比例在PVK:MEH-BP-PPV為100:1時,有近白光的現象,CIE座標為x = 0.30, y = 0.25, 及三色混合比例在PVK:OPA3008:MEH-
BP-PPV為100:0.5:2時,有白光的現象,CIE座標為x = 0.352, y = 0.347。
The PLED manufactured single-layer by blend method can achieve white light emission through Förster energy transfer mechanism. The dopant in blend polymer emitted via energy transfer between host and guest materials is usually controlled in a very low doping level. The required emission color is easily turned by varying polymer concentrations. In this paper we used poly (9-vinylcarbazole) (PVK) as host material, by means of energy transfer the excitation energy was carried from PVK to Poly[(9,9–Dioctyl-2,7-bis(2-cyano)vinylenefluorenylene)-alt-co-(2-methoxy-5-(2-ethylhexyloxy)-1,4-phenylene)](OPA3008), and to poly[2-methoxy
-5-{2-etylhexyloxy}1,4-phenylenevinylene-co-(4,4’-biphenylene)] (MEH-BP-PPV), where two polymers acted as guest materials. The PVK:OPA3008:MEH-BP-PPV blend polymer exhibited a blue to red emission with wavelength from 400 to 560 nm. The white light emission for PVK blended with MEH-BP-PPV was attributed to poorly miscible or immiscible effect. The miscible behavior of blended polymer was an important factor in efficient energy transfer. In this studied, we found the white emission electroluminescence (EL) property of the binary blended polymer which was obtained when the composition weight ratio of PVK: MEH-BP-PPV was at 100 : 1. CIE coordinates of EL were x = 0.30, y = 0.25.In the meanwhile, in the ternary blend, which was obtained when the composition weight ratio of PVK: OPA3008:MEH-BP-PPV was at 100 : 0.5 : 2. CIE coordinates of EL were x = 0.352, y = 0.347.
Abstract(in Chinese) I
Abstract(in English) II
Acknowledgment IV
Content V
Figure Captions IX
Table Captions XII
Chapter 1 1
Introduction 1
1-1 History of light emitting diode 1
1-2 Classifications of organic/ polymer light emitting diode 2
1-3 The conjugated polymers 3
1-4 Device Architecture 4
1-5 Anode and holes injection interface 5
1-6 Modes of polymer devices 5
1-7 Energy band and band gap 7
1-8 The photoluminescence process 8
1-9 The electroluminescence process 9
Chapter 2 10
Theory Basis and Material Properties 10
2-1 The concept of excitons 10
2-3 Theory of hopping transport 12
2-4 Theory of Förster Energy and charge transfer 13
2-5 Miscibility effect on the energy transfer 15
2-6 The quenching phenomena 16
2-6-1 Excimer phenomena 16
2-6-2 Exciplex phenomena 17
Chapter 3 18
Experimental Details and Measurement System Configurations 18
3-1 Spin coating process basic description 18
3-2 Experiment procedures 20
3-2-1 Experiment material 20
3-2-2 Substrate preparation 20
3-2-3 Fabrication of EL device. 21
3-3 Measurement system 22
3-4 The cyclic voltammetry measurement of MEH-BP-PPV 23
3-5 Color turning by blend design 24
3-5-1 Host and guest systems 24
3-5-2 Incomplete cascade energy transter system 25
3-5-3 Multilayer emission systems 25
3-6 The PLE Method 26
Chapter 4 27
Results and Discussion 27
4-1 The binary blend polymer films deposited on the glass substrate 27
4-1-1 Absorption analysis 27
4-1-2 Single emission of PL spectra analyses 28
4-1-3 Blend emission of PL spectra analyses 28
4-1-4 Comparison between blend and pure emission for MEH-BP-PPV 29
4-1-5 PLE spectra analysis 30
4-1-6 Overlap spectrum analysis in binary blend systems 31
4-2 The deposited device of blend polymer films for host guest systems 32
4-2-1 JV-curve analysis 32
4-2-2 Near-white EL device analysis 32
4-3 The ternary blend polymer films deposited on the glass substrate 33
4-3-1 Absorption analysis of OPA3008 33
4-3-2 PL spectra analysis of ternary blend emission 34
4-3-3 Dilution effect of PVK 36
4-3-4 Overlap spectrum analysis in ternary blend systems 36
4-3-5 PLE spectra analysis of ternary blend emission 37
4-3-6 Summary of Förster energy transfer 38
4-4 The deposited device of polymer ternary blend system 39
4-4-1 J-V curve analysis 39
4-4-2 White EL device analyses 40
Chapter 5 41
Conclusion 41
Chapter 6 42
References 42
1.M. Pose, H .Kallmann, and P. Magnante, J. Chem. Phys., 38, 2042 (1963).
2.W. Helfrich and W, G. Schneider, Phys. Rev. Lett., 14, 229 (1965).
3.C. F. Tang and S, A. Vanslyke, Appl. Phys. Lett., 51,913 (1987).
4.C. W. Tang, S. A. vanslyke, and C. H. Chem, J, Appl, Phys., 65. 3610 (1989).
5.J. H. Burroughes, D. D. C. Bradley, A. R. Brown, R. N. Marks, K. Mackay, R. H. Friend, D. L. Burn. And A. B. Holmes, Nature, 347, 539 (1990).
6.D. Braum and A. J. Hegger. Appl. Phys. Lett., 58. 1982 (1991).
7.D. D. C. Bradley. Synth. Met., 54. 401 (1993).
8.C. Kittel, “Introduction to Solid State Physics” John Wiley & Sonc, Inc., New York, New York (1988).
9.Mark Fox, 2001, Optical Properties of Solids, 76, OXFORD university press. New York USA.
10.J. Morgado, F. Cacialli, R. Iqbal, S. C. moratti, A. B. Holmes, G. Yahioglu, L. R. Milgrom, and R. H. Friend, JOURNAL OF Materials CHEMISTRY., 11, 278 (2001).
11.S. E. Shanheen, B. Kippelen, N. Peyghambarian, J. F. Wang, J.D. Anderson, E. A. Mash, P. A. Lee, and N. R. Armstrong, J. Appl. Phys., 85, 11 (1999).
12.C. J. Chang, Y. Y. Cheng, M. H. Wang, and C. S. Tuan, thin solid films, 477, 14(2005).
13.R. Katoh, S. Sinha, S. Murate, and M. Tachiya, Journal of Photochemistry and Photobiology A: Chemistry., 145, 23 (2001).
14.M. Mazzeo, J. Thompson, R.I. R.Blyth. M. Anni, G. Gigli, and R. Cingolani. Physica E 13, 1243 (2002).
15.D. H. Hwang, J. H. Lee, J. I. Lee, C. H. Lee, Y. B. Kim. Mol. Cryst. Liq. Cryst., 405, 127 (2003).
16.A. K. Agrawal and S. A. Jenekhe. Chem., Mater. 8, 579 (1996).
17.T. W. Lee, O. O. Park, H. N. Cho, J. M. Hong, C. Y. Kim, and Y. C. Kim. Synthetic Metals 122, 437 (2001).
18.Y. Xu, J. peng, Y. Mo, Q, Hou, and Y. Cao. Appl. Phys. Lett., 86, 163502 (2005).
19. K. A. Kozya, J. R. Heldt, H. A. Diehl, J. Heldt. Journal of Photochemistry and Photobiology A: Chemistry 152. 199 (2002)
20.J. H. Hsu, W. Fann, P. H. Tsao, K. R. Chung, S. A. Chen, J. Phys. Chem A 103, 2375 (1999).
21.I. D. Parker. J. Appl. Phys. 3, 75 (1994).
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top