跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.85) 您好!臺灣時間:2024/12/12 10:39
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:莊喬宇
研究生(外文):Chuang Chiao-Yu
論文名稱:改良型免疫演算法應用於影像雜訊消除與通信網路資源最佳化
論文名稱(外文):A Modified Immune Algorithm for Image Noise Cancellation and Communication Networks Resource Optimization
指導教授:蘇德仁蘇德仁引用關係
指導教授(外文):Su Te-Jen
學位類別:碩士
校院名稱:國立高雄應用科技大學
系所名稱:電子與資訊工程研究所碩士班
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2006
畢業學年度:94
語文別:英文
論文頁數:77
中文關鍵詞:免疫演算法影像雜訊消除通信網路資源最佳化
外文關鍵詞:Immune AlgorithmImage Noise CancellationCommunication Networks Resource Optimization
相關次數:
  • 被引用被引用:2
  • 點閱點閱:688
  • 評分評分:
  • 下載下載:41
  • 收藏至我的研究室書目清單書目收藏:1
本研究提出改良型複製免疫演算法 (Modified Clonal Selection Algorithm, MCSA)。在之前的研究中,複製免疫演算法(Clonal Selection Algorithm, CSA)是能平行處理的演算法,並且能改善傳統遺傳基因演算法(Genetic Algorithm, GA)中早熟與局部最佳解的問題;但複製免疫演算法仍有兩項可改進的缺點:缺乏彈性的突變率和單調的突變法則。
因此在本研究中,我們提出附有自適性突變策略的改良型複製免疫演算法, 在新的突變策略中,以抗體本身親和力為依據,自適性調整突變率的大小值,並輔以改良的複製細胞群架構與不同的突變運算子,來改善原始複製演算法的尋優效率與收斂速度,並由實驗結果可得,改良型複製免疫演算法能有效應用在數值問題、影像雜訊消除與通信功率頻寬資源分配的工程問題上。
In this thesis, a modified clonal selection algorithm (MCSA) is presented. Formerly, the standard clonal selection algorithm (CSA) is highly parallel and improves the premature convergence and local search problems in traditional genetic algorithm. However, there are drawbacks in clonal selection algorithm: the lack of flexible mutation probability and monotonous mutation mode.
Therefore, we propose a modified clonal selection algorithm (MCSA) which has an adaptive maturation strategy based on affinity and clone framework to search approximate optimal solution. The simulation results show that the modified clonal selection algorithm has better efficiency and convergence than the standard clonal selection algorithm in the mathematical optimization problems, image noise cancellation, and communication networks power/rate resource optimization, respectively.
Abstract I
Contents IV
Chapter 1 Introduction 1
1.1 Motivation 1
1.2 Brief sketch of the thesis 3
Chapter 2 Biological Immune System 4
2.1 Introduction 4
2.2 Structure of Immunity 5
2.2.1 Lymphocytes 6
2.2.2 The B cell 6
2.2.3 The T cell 7
2.2.4 The Antibody 8
2.3 Phenomenon of Immunity 9
2.3.1 Primary and Secondary Immune Responses 9
2.3.2 Clonal Selection 10
2.4 Artificial Immune Systems 11
Chapter 3 Modified Clonal Selection Algorithm 13
3.1 Clonal Selection Theory 13
3.2 Clonal Selection Algorithm 14
3.3 Causations of Improving 17
3.4 Modified Clonal Selection Algorithm 18
3.5 The Maturation Strategy 20
3.5.1 The Pyramid Framework 21
3.5.2 Self-Adaption Mutation Probability 21
3.6 The Mutation Operators 23
3.6.1 Gaussian Mutation 23
3.6.2 Swapping Mutation 25
3.6.3 Multi-Point Mutation 25
3.7 The Primary and Secondary Immune Response Mechanism 26
Chapter 4 Mathematical Optimization Problems 29
4.1 Introduction 29
4.2 Problem Definitions and Results 29
4.3 Summary 34
Chapter 5 Image Noise Cancellation 35
5.1 Introduction 35
5.2 Cellular Neural Network 36
5.3 MCSA-CNN Templates Optimization 37
5.4 Simulation Results 40
5.5 Summary 44
Chapter 6 Communication Network Resource Optimization 45
6.1 Introduction 45
6.2 Third Generation Network 45
6.3 Mathematical Formulation of Resources Control 47
6.4 Experimental Results 50
6.5 Summary 55
Chapter 7 Conclusions 59
References 61
List of Publications 64
Biography 65
[1]. P. Hajela, & J. Lee, “Constrained Genetic Search via Schema Adaptation: An Immune Network Solution”, Structural Optimization, 12(1), pp.11-15,1996.
[2]. T. Fukuda, K. Mori, & M. Tsukiama, “Parallel Search for Multi-Modal Function Optimization with Diversity and Learning of Immune Algorithm”, In (Ed.) D. Dasgupta, Artificial Immune Systems and Their Applications, Springer-Verlag, pp.210-220 ,1999.
[3]. L. N. de Castro., & F. J. Von Zuben, Artificial Immune Systems: Part II – A Survey of Applications, Technical Report, DCA-RT 02/00, 2000.
[4]. L. N. de Castro., & F. J. Von Zuben, Artificial Immune Systems: Part I - Basic Theory and Applications, Technical Report TR-DCA 01/99, 1999.
[5]. J. I. Timmis, Artificial Immune Systems: A Novel Data Analysis Technique Inspired by the Immune Network Theory, Doctor of Philosophy of The University of Wales, 2001.
[6]. L. N. de Castro., & F. J. Von Zuben, “Learnig and Optimization Using the Clonal Selection Principle”, IEEE Transactions on Evolutionary Computation, Vol. 6, NO.3, pp.239-251, 2002.
[7]. Y. Ying, & C.Z. Hou, “A Clonal Selection Algorithm by Using Learning Operator”, IEEE Third International Conference on Machine Learning and Cybernetics, pp. 2924- 2929, 2004.
[8]. R. Hinterding, “Gaussian Mutation and Self-adaption for Numeric Genetic Algorithms”, IEEE Evolutionary Computation Conference 1995, pp.384- 389, 1995.
[9]. T.P. Hong, H.S. Wang & W.C. Chen, “Simultaneously Applying Multiple Mutation Operators in Genetic Algorithms”, Journal of Heuristics, 6: pp.439-455, 2000.
[10]. L.O. Chua & L. Yang, “Cellular Neural Networks: Theory”, IEEE Trans. Circuits Syst., vol.35, pp.1257-1272, Oct.1988.
[11]. L.O. Chua & L. Yang, “Cellular Neural Networks: Applications”, IEEE Trans. Circuits Syst., vol.35, pp.1273-1290, Oct.1988.
[12]. P. Lopez, D.L. Vilarino & D. Cabello, “Design of Multilayer Discrete Time Cellular Neural Networks for Image Processing Tasks Based on Genetic Algorithms”, IEEE International Symposium on Circuits a System, pp. 133-136, 2000.
[13]. B. Zeng., “Optimal Median-type Filtering under Structural Constraints”, IEEE Trans. On Image Proc., pp. 921-931, July 1995.
[14]. M. Moustafa., I. Habib & M. Naghshineh, “GAME Based Dynamic Resource Scheduling in QoS Aware Radio Access Networks”, Soft comput .Vol.9, pp.101-115, 2005.
[15]. T. M. Chan, S. Kwong & K. F. Man, “Multi-objective Resource Optimization in Mobile Communication Network”, Industrial Electronics Society, IECON’03, pp.2029-2034, 2003
[16]. J. Lee & L. Miller, CDMA Systems Engineering Handbook, Artech House Publishers, Maryland, 1998.
[17]. 3GPP, Universal Mobile Telecommunication System (UMTS); Selection Procedures for the choice of Radio Transmission Technologies of the UMTS, ETSI TR 101 112 version 3.2.0, 1998.
[18]. L. N. de Castro & J. Timmis, Artificial Immune Systems: A New Computational Intelligence Approach, Springer Publisher, 2002.
[19]. Z. Liu, J. Zhou & S. Lai, “New Adaptive Genetic Algorithm Based on Ranking”, Proc. of the Second International Conference on Machine Learning and Cybernetics 2003, pp.1841-1844, 2003.
[20]. W. Gutkowski, Z. Iwanow & J. Bauer, “Controlled Mutation in Evolutionary Structural Optimization”, Struct Multidisc Optim 21, pp.355-360, 2001.
[21]. T.J. Su & H.H. Hsueh, “Robust Stability of Uncertain Cellular Neural Network for Image Processing – An LMI approach,” CNNA2005,pp. 48-51, 2005
[22]. W. J. Shyr, T. J. Su & L. Hong, “Comparison of Optimal Design Using Immune and Genetic Algorithms”, IEEE ICSS2005, pp. 644-648, 2005.
[23]. M. Moustafa, I. Habib & M. N. Naghshineh,”Efficient Radio Resource Control in Wireless Networks”, IEEE Transactions on Wireless Communications. Vol.3 No.6, pp.2385-2395, 2004.
[24]. 陳如斌, ”二次元之結構外型最佳化:類免疫 演算法之應用”, 碩士論文, 大同工學院機械研究所, 2003.
[25]. 周鵬程, 遺傳演算法原理與應用-活用Matlab, 全華科技圖書, 2002.
[26]. 顧育先, “考慮服務品質限制及整合語音與資料傳輸之WCDMA系統允入控制演算法”, 碩士論文, 臺灣大學資訊管理學研究所, 2004.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top