(3.230.143.40) 您好!臺灣時間:2021/04/19 05:15
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:陳世明
研究生(外文):Shih-Ming Chen
論文名稱:混合式的適應性演算法應用於多通道上的分析
論文名稱(外文):The Hybrid Adaptive Algorithm for the analysis of Multi-Channel
指導教授:鐘國家鐘國家引用關係
指導教授(外文):Gwo-Jia Jong
學位類別:碩士
校院名稱:國立高雄應用科技大學
系所名稱:電子與資訊工程研究所碩士班
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2006
畢業學年度:94
語文別:英文
論文頁數:70
中文關鍵詞:共同通道干擾最小均方演算法可加性白色高斯雜訊鎖幅迴路適應性濾波器實數基因演算法均方誤差訊號雜訊比干擾載波比
外文關鍵詞:CCILMSAWGNALLADAPTIVE FILTERRGAMSESNRICR
相關次數:
  • 被引用被引用:0
  • 點閱點閱:226
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:24
  • 收藏至我的研究室書目清單書目收藏:0
在這篇論文中,對於在通訊傳輸系統裡考慮了共同通道干擾、多通道干擾及可加性白色高斯雜訊干擾對頻率調變信號的影響。如何去設計一個效能強大的解調器,成為了本論文主要的議題。

對於提出了一個使用適應性濾波器,加以結合實數基因演算法並套用在鎖幅迴路分離系統上的架構,目的是為了改善信號失真、共同通道干擾、雜訊干擾等的情形以及解決在傳統之鎖幅迴路及適應性濾波器的諸多缺點。在這裡,實數基因被利用來找尋在最小均方誤差演算法中的最佳步階大小的值,進而改善系統的收斂速度並且使均方誤差為最小。

根據在時域與頻域的模擬結果分析下,證明了我們所提出來的LMS-RGA演算法不僅能操作在高干擾載波比與低通道訊雜比的條件下,而且在系統效能上也優於其它的分離演算法。
In this thesis, the effects of Co-channel interference (CCI), Multi-channel interference and the additive white Gaussian noise (AWGN) interference to frequency modulated (FM) signals are considered in the communication transmission system. It is the main topic for how to design a high performance and powerful demodulator.

The presented scheme is combined adaptive filter with Real-parameter Genetic Algorithm (RGA) into the amplitude-locked loop (ALL) separation system, in order to improve the signal distortion, co-channel, noise interference and the drawbacks of ALL and adaptive filter. The method of RGA is adopted to find the best value of step size of least-mean-square (LMS) algorithm to increase the convergence rate of system and minimize the mean-square error (MSE) value.

We prove the performance of proposed LMS-RGA is better than the other separated algorithms by the simulation results for the analysis of time/ frequency domain. The main advantage of proposed separated system can be applied to operate at high interference to carrier ratio (ICR) and low channel signal-to-noise ratio (SNRc).
Abstract in Chinese-----------------------------------------------i
Abstract---------------------------------------------------------ii
Acknowledgements------------------------------------------------iii
Contents---------------------------------------------------------iv
List of Figures--------------------------------------------------vi
List of Tables---------------------------------------------------ix
KEYWORDS----------------------------------------------------------x
Chapter 1 Introduction--------------------------------------------1
Chapter 2 Related Background and Analysis-------------------------3
2.1 Brief Overview - Frequency Modulation-------------------------3
2.2 Principle of the Phase-Locked Loop----------------------------4
2.3 Amplitude-Locked Loop (ALL)-----------------------------------7
2.3.1 Co-channel Interference (CCI)-----------------------------7
2.3.2 ALL Algorithm Design-------------------------------------10
2.3.3 ALL Circuit Design Principle-----------------------------13
Chapter 3 Proposed Adaptive algorithm----------------------------19
3.1 Adaptive Filter----------------------------------------------19
3.1.1 MSE Criterion--------------------------------------------19
3.1.2 Optimal Filter Weights-------------------------------------21
3.1.3 Least-Mean Square (LMS) Algorithm--------------------------23
3.2 Genetic Algorithm--------------------------------------------25
3.2.1 Fitness Function-------------------------------------------27
3.2.2 Reproduction and Selection Methods-------------------------28
3.2.3 Genetic Operations-----------------------------------------30
3.2.4 Termination Criteria---------------------------------------32
3.3 The Hybrid Adaptive Algorithm: LMS-RGA Algorithm-------------32
Chapter 4 The Analysis of Signal Model Under AWGN Channel--------35
4.1 Co-channel FM signals Model----------------------------------35
4.2 Multi-channel FM signals Model-------------------------------41
Chapter 5 Simulation Results-------------------------------------46
5.1 Co-channel Signals Separation by Proposed Algorithm----------46
5.2 Multi-channel Signals Separation by Proposed Algorithm-------53
Chapter 6 Conclusions--------------------------------------------64
References-------------------------------------------------------66
List of Publications---------------------------------------------69
Autobiography----------------------------------------------------70
[1] T. S. Rappaport, Wireless Communications. Englewood Cliffs, NJ: Prentice-Hall, 1996.
[2] T. J. Moir, “Analysis of an amplitude-locked loop,” Electronics Letters, vol. 31, Issue 9, 27 April 1995 Page(s): 694 – 695.
[3] G.. J. Jong, T.J Moir, A.M Pettigrew, T.J, Su, “Improvement of FM demodulator with cochannel FM interference,” Electronics Letters, vol. 35, Issue 20, 30 Sept. 1999 Page(s): 1758 – 1759, Digital Object Identifier 10.1049/el: 19991172.
[4] John E. Ohlson, “Phased-Locked Loop Operation in the Presence of Impulsive and Gaussian Noise,” IEEE transactions on communications, vol. Com-21, NO.9, September 1973, pp. 991-996.
[5] B. C. Sarkar, “Phase Error Dynamics of a First-Order Phase Locked Loop in the Presence of Cochannel Tone Interference and Additive Noise,” IEEE transactions on communications, vol. 38, NO.7, July 1990, pp. 962-965.
[6] T. J. Moir and A. M. Pettigrew, “Inband Noise Cancelling in FM Systems: The White Noise Case,” Electronics Letters 23rd, Vol. 28 NO.9, April 1992, pp. 814-815.
[7] Simon Haykin, Communication Systems, John Wiley & Sons, Inc. forth edition, 2001, pp. 107-110 & pp.121-124.
[8] Theodore S. Rappaport, WIRELESS communication Principle & Practice, Prentice Hall, USA,1999, pp.37-39.
[9] A. M. Pettigrew, T. J. Moir, D. F. Clark, et. al., “The Amplitude-Locked Loop, the theory and application of a major improvement in frequency modulation,” Battlefeield Systems Internation, chertsey, Surrey, June 1996 4 -6.
[10] G.. J. Jong and T. J. Moir, “The Performance of the amplitude-locked loop with cochannel interference,” IECON ’98, 31st Aug4th-Sept, Aachen, Germany, 1998.
[11] G.. J. Jong, T. J. Moir, and A. M. Pettigrew, “The high performance FM demodulator using the amplitude-locked loop with cochannel interference,” International Symposium on Communication (ISCOM), Kaohsiung, Taiwan, 1999, pp.284-288.
[12] Jose C. Principe, Neil R. Euliano, W. Curt Lefebvre, NEURAL AND ADAPTIVE SYSTEMS: Fundamentals through Simulations, 2000, pp. 430-434.
[13] B. Widrow, et. al., Adaptive Noise Cancelling: Principles and Applications, Proc. IEEE, vol. 63,no. 12, December 1975, pp. 1692-1718.
[14] J.R. Glover, Jr., “Adaptive Noise Cancelling Applied to Sinusoidal Interferences,” IEEE Transactions on Acoustics, Speech, and Signal Processing, vol. ASSP-25, no. 6, December 1977, pp. 484-491.
[15] Simon Haykin, Adaptive Filter Theory, Prentice-Hall, Inc. 3te Edition, 1996, pp. 41-49.
[16] C.T.C. Le, S. Hensley and E. Chapin, “Adaptive Filtering of RFI in Wideband SAR Signals,” 7th Annual JPL AirSAR Workshop, Pasadena, California, January 1997.
[17] H. Kim, T. Lee, D. Lim, D. Jung, ”The hybrid method for determining an adaptive step size of the unknown system identification using genetic algorithm and LMS algorithm,” Neural Information Processing, 2002. ICONIP '02. Proceedings of the 9th International Conference on Volume 2, 18-22 Nov. 2002 Page(s): 814 - 818 vol.2.
[18] B. Farhang-Boroujeny, Adaptive Filters Theory and Applications, 1998, pp 50-54.
[19] C.F.N. Cowan, and P.M. Grant, Adaptive Filters, Prentice-Hall, 1985.
[20] J. H Holland, Adaptation in natural and artificial systems, Ann Arbor, MI: The university of Michigan Press, 1975.
[21] J. H. Holland, Genetic Algorithm, Sci, Am., July 1992, pp.66-72.
[22] A.H. Wright, Genetic algorithms for real parameter optimization, in Foundations of Genetic Algorithms, J.E. Rawlins (Ed.), Morgan Kaufmann, 1991, pp. 205-218.
[23] K.F. Man, K. S. Tang and S. Kwong, Genetic Algorithms, 1999, pp. 5-30.
[24] Jen-Fa Huang, Yih-Fuh Wang, Shih-Chaio Lo,“ Genetic Algorithm-based Preplanned Backup Paths for Network-on-Chip Fault-Tolerant Communication,” June 2004, 4- 47.
[25] Michalewicz, Z(1992), Genetic Algorithms + Data Structures = Evolution Programs, Springer-Verlag, New York, USA.
[26] S.Iketla and N.Miirat,a, “A Method of ICA in Time-Frequency Domain”, Proc. of International Workshop on ICA and BSS, Jan. 1999, pp.365-371.
[27] M.J Reyes-Gomez, B. Raj, D.R.W. Ellis, “Multi-channel source separation by factorial HMMs,” Acoustics, Speech, and Signal Processing, 2003. Proceedings. (ICASSP '03). 2003 IEEE International Conference on Volume 1, 6-10 April 2003 Page(s):I-664 - I-667 vol.1.
[28] Gwo-Jia Jong, Ci-Fans Syu and Ming-Hsun Hsieh, “The system model for the separation of multi-channel FM signals using adaptive FIR filter,” Signal Processing, 2004. Proceedings. ICSP '04. 2004 7th International Conference on Volume 1, 31 Aug.-4 Sept. 2004 Page(s): 315 - 318 vol.1 Digital Object Identifier 10.1109/ICOSP.2004.1452645.
[29] Gwo-Jia Jong, Po-Jen Liao, Chun-Yao Jung and Te-Jen Su,” Multi-channel Interference Separation for the AWGN Channel,” Intelligent Signal Processing and Communication Systems, 2005. ISPACS 2005. Proceedings of 2005 International Symposium on 13-16 Dec. 2005 Page(s): 581 – 584.
[30] C. Benjangkaprasert, S. Jorphochaudom, S. Chompoo, O. Sangaroon, K. Janchitrapongvej, “The combination of genetic algorithm and variable step-size algorithm for adaptive IIR notch filter,” Neural Networks and Signal Processing, 2003. Proceedings of the 2003 International Conference on Volume 1, 14-17 Dec. 2003 Page(s): 480 - 483 Vol.1.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔