(3.234.221.67) 您好!臺灣時間:2021/04/11 15:11
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:孔政淵
研究生(外文):Cheng-Yuan Kung
論文名稱:氧化鋁基板製造高效率2.4/5.2GHz雙頻印刷陶瓷帶通濾波器
論文名稱(外文):Fabrication High Performance 2.4/5.2GHz Dual-Frequency Printed Ceramic Band Pass Filters by Using Al2O3 Substrate
指導教授:鄭平守鄭平守引用關係楊證富楊證富引用關係
指導教授(外文):Ping-Shou ChengCheng-Fu Yang
學位類別:碩士
校院名稱:國立高雄應用科技大學
系所名稱:電子與資訊工程研究所碩士班
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2006
畢業學年度:94
語文別:英文
論文頁數:90
中文關鍵詞:2.4/5.2GHz帶通濾波器濾波器雙頻
外文關鍵詞:2.4/5.2GHzBand Pass FilterDual-Frequency
相關次數:
  • 被引用被引用:0
  • 點閱點閱:203
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
微帶線式印刷陶瓷濾波器因其擁有體積小、便宜、容易製作、響應特性佳與多頻之特點,所以已被廣泛地應用在許多微波通訊系統上。在本研究中,採用高品質因素之氧化鋁陶瓷材料為基板,以獲取上述之優點。
本研究所提出之三種雙頻帶通濾波器(方形、矩形與H形濾波器),皆是以基頻共振於2.4GHz,並適當調整其一階諧波,使之共振於5.2GHz,如此一來,即可用於IEEE-802.11a/b/g無線傳輸頻段。如同本文結果所示,濾波器之形狀與共振電流路徑對其共振頻率、插入損失與旁波瓣深度擁有非常大之影響。本文所提出的濾波器,為了擁有較佳的訊號鑑別度,皆是將50Ω匹配之輸入與輸出端以耦合的方式連接於共振器前後兩端。為了降低實驗成本並獲得所需的濾波器特性,我們先以IE3D電磁模擬軟體進行設計與調校各種不同圖形參數,之後再以網板印刷的方式製作完成,並將SMA焊接於其上,再以安捷倫-8722型網路分析儀量測其特性。經由量測之結果顯示,本文所提出之2.4/5.2GHz雙頻印刷陶瓷帶通濾波器與先前模擬之結果趨勢相當接近。
Microstrip printed ceramic filters are being widely used in microwave communication systems owing to their excellent characteristics of small size, low cost, easy fabrication, higher performance and multi-frequencies. In this research, high quality Al2O3 ceramic are used as the substrate to fabricate modified dual-frequencies band pass filters in order to have that advantages.
In this study, three types of band pass filters (square type, rectangle type and H type filters) are designed for resonating at 2.4GHz and 5.2GHz by base mode and its one-order harmonic wave respectively in order to operate for the IEEE-802.11a/b/g. As the results show, the morphologies and resonant current paths have large influence to the resonant frequencies, insertion loss and the out-of-band rejection. In order to get better signal-distinguish-ability, the 50Ω input/output ports of the filters all use the coupled method connect to the opposite sides of the patches. In order to reduce the cost and get the filtering properties that we want, the filters are also changed with the variation of different detail revise by the IE3D electromagnetic simulator. The proposed filters are fabricated by halftone printing and measured by Agilent-8722 network analyzer with the SMA connecters welding. As the measured results show, the trends of proposed 2.4/5.2GHz dual-frequency printed ceramic band pass filters have the good agreement to the simulated results.
I. Introduction 1
II. Theory Description 4
2.1 Microwave Theory 4
2.1.1 Material Requirement 4
2.1.2 Microwave Dielectric Properties 5
2.1.3 Network Analysis 8
2.1.4 Scattering Parameters 9
2.1.5 Shot-Circuit Admittance Parameters 12
2.1.6 Open-Circuit Admittance Parameters 12
2.1.7 ABCD Parameters 13
2.2 Transmission Lines 15
2.2.1 Microstrip Lines 15
2.3.2 Microstrip Losses 19
2.4 Filters Theory 21
2.4.1 General Definitions 21
2.4.2 Butterworth Response 24
2.4.3 Chebyshev Response 25
2.4.4 Elliptic Response 26
2.4.5 Gaussian Response 27
2.4.6 Resonators 28
III. Design and Experiment Procedure 31
3.1 Design Procedure 31
3.2 Fabrication Process 32
IV. Results and Discussion 34
4.1 Microstrip Square Coupling Band Pass Filter 34
4.1.1 Square Patch Size 34
4.1.2 Square Notch Size 36
4.1.3 Balance of Square Patch Size and Square Notch Size 37
4.1.4 Measured Results of microstrip square coupling band pass filters 37
4.2 Microstrip Rectangle Coupling Band Pass Filter 39
4.2.1 Rectangle Length without Square Notch 39
4.2.2 Square Notch Size 41
4.2.3 Rectangle Length with Square Notch 42
4.2.4 Measured Results of microstrip rectangle coupling band pass filters 43
4.3 Microstrip H Coupling Band Pass Filter 45
4.3.1 Resonator Length 45
4.3.2 Resonator Width 46
4.3.3 Measured Results of microstrip H coupling band pass filters 47
V. Conclusion 49
VI. Reference 52
[1] B. Razavi, 1998, RF microelectronic, Prentice-Hall Communication Engineering and Emerging Technologies Series, London.
[2] L. Zhu and K. Wu, 1999, “A joint field/circuit model of line-to-ring coupling structures and its application to the design of microstrip dual-mode filters and ring resonator circuits”, IEEE Transactions on Microwave Theory and Techniques, vol. 47, pp. 1938–1948, 1999.
[3] I. Wolff, 1972, “Microstrip bandpass filter using degenerate modes of a microstrip ring resonator”, Electronics Letters, vol. 8, no. 12, pp. 163–164.
[4] J. Ryynanen, K. Kivekas, J. Jussila, A. Parssinen, and K. A. I. Halonen, 2001, ”A dual-band RF front-end for WCDMA and GSM applications’, IEEE Journal of Solid-State Circuits, vol. 8, no. 36, pp. 1198–1204.
[5] S. Wu and R. Razavi, 1998, ”A 900-MHz/1.8-GHz CMOS receiver for dual-band applications”, IEEE Journal of Solid-State Circuits, 33, pp. 2178–2185.
[6] H. Miyake, S. Kitazawa, T. Ishizaki, T. Yamada, and Y. Nagatomi, 1997, “A miniaturized monolithic dual band filter using ceramic lamination technique for dual mode portable telephones”, 1997 IEEE MTT-S International Microwave Symposium, pp. 789–792.
[7] A. Hennings, G. Semouchkin, E. SemoucNtina, and Michael Lanagan, 2003, “Design optimization of microstrip square-ring band-pass filter with quasi-elliptic function,” 33rd European Microwave Conference, Munich.
[8] L. H. Hsieh and K. Chang, 2002, “Dual-mode quasi-elliptic-function bandpass filters using ring resonators with enhanced-coupling tuning Stubs”, IEEE Transactions on Microwave Theory and Techniques, Vol. 50, No. 5.
[9] Shan-Li Chang , 2002, The study of MCAS glass-doped Al2O3-TiO2 microwave ceramic, Thesis for Master of Science, Department of Electrical Engineering National Sun Yat-Sen University, Kaohsiung, Taiwan, R.O.C.
[10] William D. Callister JR., 2000, Materials Science and Engineering An Introduction, Fifth Edition, John Wiley & Sons INC., New York.
[11] F.C Brown, 1985, The Physics of Solids, Second Edition, W.B. Saunders, New York.
[12] R. E. Collin, 1992, Foundations For Microwave Engineering, Second Edition, McGraw-Hill, New York.
[13] S. Haykin, 1994, Communication Systems, Third Edition, Wiley, New York.
[14] Jia-Sheng Hong, M. J. Lancaster, 2001, Microstrip Filters for RF/Microwave Applications, Wiley, New York.
[15] K. C. Gupta, R. Garg, I. Bahl, and P. Bhartis, 1996, Microstrip Lines and Slotlines, Second Edition, Artech House, Boston.
[16] E. O. Hammerstad and O. Jensen, 1980, “Accurate models for microstrip computer-aided design”, IEEE MTT-S Digest, pp. 407–409.
[17] E. J. Denlinger, 1980, “Losses of microstrip lines”, IEEE Trans., MTT-28, pp. 513–522.
[18] T. Edwards, 1991, Foundations for Microstrip Circuit Design, Second Edition, Wiley, Chichester, England.
[19] J. Helszajn, 1990, Synthesis of Lumped Element, Distributed and Planar Filters, McGraw-Hill, London.
[20] K. Rambabu and M. Ramesh,1999, “Models describe microstrip circuit characteristics”, Microwave & RF, 38, pp. 64–74.
[21] C. Dening, 1989, “Using microwave CAD programs to analyze microstrip interdigital filters”, Microwave Journal, pp. 147–152.
[22] M. J. Lancaster, 1997, Passive Microwave Device Applications of High-Temperature Superconductors, Cambridge University Press, Cambridge.
[23] David M. Pozar, 1998, Microwave engineering, Wiley, New York.
[24] David K. Cheng, 1998, Field and Wave Electromagnetics.
[25] J. D. Rhodes,1976, Theory of Electrical Filters, Wiley, New York.
[26] Reinhold Ludwig, Pavel Bretchko, 2000, RF circuit design /theory and applications, Upper Saddle River, pp. 201~203.
[27] J.-S. Hong and M. J. Lancaster, 1995, “Bandpass characteristics of new dual-mode microstrip square loop resonators”, Electronics Letters, 7, pp. 891–892.
[28] J.-S. Hong and M. J. Lancaster, 2000, “Microstrip triangular patch resonator filters”, IEEE MTT-S Digest., 1, pp. 331–334.
[29] Tsung-Hsien Lee, 2003, Fabrication of Modifiable Dual-Mode Band-pass Filter on Al2O3 Substrate, Thesis for Master of Science, Department of Electrical Engineering National Sun Yat-Sen University, Kaohsiung, Taiwan, R.O.C.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔