跳到主要內容

臺灣博碩士論文加值系統

(44.212.94.18) 您好!臺灣時間:2023/12/10 15:58
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:黃敏倫
研究生(外文):Min-Lun Huang
論文名稱:光子晶體與非線性光波導元件之研究
論文名稱(外文):The Study of Photonic Crystal and Nonlinear Optical Waveguide Devices
指導教授:吳曜東吳曜東引用關係
指導教授(外文):Yaw-Dong Wu
學位類別:碩士
校院名稱:國立高雄應用科技大學
系所名稱:電子與資訊工程研究所碩士班
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2006
畢業學年度:94
語文別:英文
論文頁數:109
外文關鍵詞:Beam Propagation MethodFinite-Difference Time-Domain MethodSpatial SolitonsPhotonic Crystal
相關次數:
  • 被引用被引用:0
  • 點閱點閱:259
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本論文是討論光波導元件的特性,吾人將分別對非線性平面光波導與光子晶體光波導二種不同的形式的光波導來做探討。非線性平面光波導是指光波導結構中含有折射率會隨電場強度而改變的介質。利用空間光固子碰撞的特性,在這裡提出了導波層為非線性的全光式切換器與分波多工器。經由適當的功率及元件長度,將可達成切換器與分波多工的功能。
光子晶體是指由二種或二種以上不同介質材料呈週期性排列的結構。在此週期性排列的介電材料會造成某部分頻率的電磁波無法在晶體內傳遞,此區域稱為光子能隙。吾人將利用此現象去設計光子晶體光波導,利用時域有限差分法及平面波展開法去分析光子晶體光波導結構。首先藉由平面波展開法分別繪出其不同波導寬度的色散曲線圖及其模態。利用此特性去實現一個1310奈米與1550奈米解多工器的功能。另外我們討論光子晶體方向耦合器,利用方向耦合器去設計一個具有波長選擇功能的介質柱方向耦合器。當輸入不同的波長,它可以使能量在不同的輸出端間轉換。在超高速與超高容量的光通與光資訊處理應用中,這些結構將扮演極重要的關鍵元件。
In this thesis, it discussed the properties of optical waveguides. We analyze the planar nonlinear waveguide and photonic crystal waveguide, respectively. Nonlinear waveguide means that the refractive indices of the optical waveguide changed with the electric field intensity. By using the spatial solitons collision properties, we proposed all-optical switch and wavelength auto-router with nonlinear-guided film layer. The numerical results show that the proposed photonic device could really function by simply adjusting parameters such as the input power, the device length.
A photonic crystal is a revolutionary class of artificially periodic electromagnetic media, in which a fundamentally new electromagnetic phenomenon can be achieved. A photonic band gap defines a range of frequencies for which light is forbidden to exist inside the crystal. In such waveguides, the optical field is confined, horizontally, by a PBG provided by the photonic crystal. By using plane-wave expansion method and finite-difference time-domain method to analyzed photonic crystal waveguide structure. It not only obtained dispersion relation curves, but also observed the field patterns at various width of waveguide. The numerical results show that this device could really function as a 1310 nm/1550 nm demultiplexer. In addition, we will study photonic crystal directional coupler. Then, we will design a coupler device based on a dielectric-rod photonic crystal for efficient wavelength-dependent coupling. It is found that the coupled power ratio between the two output ports can be reversed when launch different optical signal wavelength. These would be a potential key component in the applications of ultra-high-speed and ultra-high-capacity optical communications and optical data processing systems.
List of Tables
List of Figures
Chapter 1: Introduction
Chapter 2: Beam Propagation Method and Finite-Difference Time-Domain Method
2.1. Beam Propagation Method
2.2. Finite-Difference Time-Domain Method
Chapter 3: New All-optical Switch Using the Local Nonlinear Mach-Zehnder Interferometer
3.1. Introduction
3.2. Analysis
3.3. Numerical Results
3.4. Summary
Chapter 4: New All-Optical Switch and Wavelength Auto-Router Based on Spatial Solitons
4.1. Introduction
4.2. Analysis
4.3. Numerical Results and Discussions
4.4. Summary
Chapter 5: 1310/1550-Nanometer All-Optical Wavelength Router Using Photonic Crystal Waveguides
5.1. Introduction
5.2. Theoretical Modeling and Analysis
5.3. Numerical Results and Discussions
5.4. Summary
Chapter 6: Wavelength Demultiplexing Structure Based on Directional Coupler Waveguides in 2-D Photonic Crystal
6.1. Introduction
6.2. Analysis
6.3. Numerical Results and Discussions
6.4. Summary
Chapter 7: Conclusion
Reference
[1]S. Maneuf, R. Desailly, and C. Froehly, 1998, “Stable self-trapping of laser beams: Observation in a nonlinear planar waveguide,” Opt. Commun., Vol.65, pp.193-198.
[2]Y. R. Shen, 1975, “Self-focusing: experimental,” Prog. Quantum Electron., Vol.4, pp.1-34.
[3]J. T. Manassah, P. L. Baldeck, and R. R. Alfano, 1988, “Self-focusing and self-phase modulation in a parabolic graded-index optical fiber,” Opt, Lett., Vol.13, pp.589-591.
[4]J. T. Manassah, P. L. Baldeck, and R. R. Afano, 1998, “Self-focusing, self-phase modulation, and diffraction in bulk homogeneous material,” Opt. Lett., Vol.13, pp.1090-1092.
[5]H. Vach, C. T. Seaton, G. I. Stegeman, and I. C. Khoo, 1984, “Observation of intensity-dependent guide waves,” Opt. Lett., Vol.9, pp.238-240.
[6]P. A. Belanger and P. Mathieu, 1987, “Dark soliton in a derr defocusing medium,” Appl. Opt., Vol.26, pp.111-113.
[7]L. Thylen, E. M. Wright, G. I. Stegeman, C. T. Seaton, and J. V. Moloney, 1986, “Beam propagation method analysis of a nonlinear directional coupler,” Opt. Lett., Vol.11, pp.739-741.
[8]J. D. Valera, B. Svensson, C. T. Seaton, and G. I. Stegeman, 1986, “Bistability and switching in thin film waveguides with liquid crystal cladding,” Appl. Phys. Lett., Vol. 48, pp. 573-574.
[9]R. M. Fortenberry, R. Moshrefzadeh, G. Assanto, X. Mai, E. M. Wright, C. T. Seaton, and G. I. Stegeman, 1986, “Power-dependent coupling and switching in prism and grating coupling to ZnO waveguides.” Appl. Phys. Lett., Vol.49, pp.6987-6989.
[10]P. Danielsen, and D. Yevick, 1982, “Improved analysis of the propagating beam method in longitudinally perturbed optical waveguides,” Appl. Opt., Vol.21, pp.4188-4189.
[11]B. Hermansson, D. Yevick, and P. Danielsed, 1983, “Propagation beam analysis of multimode waveguide tapers,” IEEE J. Quantum Electron., Vol.QE-19, pp.1246-1251.
[12]D. Yevick, and B. Hermansson, 1990, “Efficient beam propagation techniques,” IEEE J. Quantum Electron., Vol.QE-26, pp.109-112.
[13]A. Splett, M. Majd, and K. Petermami, 1991, “A novel beam propagation method for large refractive index steps and large propagation distance,” IEEE Photon. Technol. Lett., Vol.3, pp.466-468.
[14]B. M. Nyman, and P. R. Pruenal, 1989, “The modified beam propagation method,” J. Lighwave Technol., Vol.7, pp.931-936.
[15]J. van Roey, J. van der Donk, and P. E. Lagasse, 1981, “Beam propagation method: analysis and assessment,” J. Opt. Soc. Am., Vol.71, pp.803-810.
[16]R. Scarmozzino and R. M. Osgood, Jr, 1991, “Comparison of finite-difference and Fourier-Transform solutions of the parabolic wave equation with emphasis on integrated-optics applications,” J. Opt. Soc. Am. A., Vol.8, pp.723-731.
[17]Feit, M. D., and J. A. Fleck, Jr., 1978, “Light propagation in graded-index optical fibers,” Appl. Opt., Vol.17, pp.3990-3998.
[18]Chung, Y., and N. Dagli, 1990, “Explicit finite difference beam propagation method: applications to semiconductor rib waveguide Y-junction analysis,” Electron. Lett., Vol.26, pp.711-713.
[19]W. H. Press, B. P. Flannery, S. A. Teuklsky and W. T. Vetterling, 1986, Numerical Recipes: The Art of scientific Computing, Cambrige University, New York.
[20]K. S. Yee, 1996, “Numerical solution of initial boundary value problems involving Maxwell’s equations in isotropic media,” IEEE Trans. Antennas and Propagation., Vol.14, pp.302-307.
[21]J. P. Berenger, 1994, “A perfectly matched layer for the absorption of electromagnetic wave,” J. comput. Phys., Vol.114, pp.185-200.
[22]F. Lederer, U. Langbein, and H. –E. Ponath, 1983, “Nonlinear waves guided by a dielectric slab,” Appl. Phys. B, Vol.31, pp.69-73.
[23]G. I. Stegeman, C. T. Seaton, J. Chilwell, and S. D. Smith, 1984, “Nonlinear waves guided by thin films,” Appl. Phys. Lett., Vol.44, pp.830-832.
[24]P. Li Kam Wa, J. E. Stich, N. J. Mason, J. S. Robert, P. N. Robson, 1985, “All optical multiple–quantum–well waveguide switch,” Electron. Lett., Vol.21, pp.26-27.
[25]J. V. Moloney, J. Ariyasu, C. T. Seaton, and G. I. Stegeman, 1986, “Stability of nonlinear stationary waves guided by a thin film bounded by nonlinear media,” Appl. Phys. Lett., Vol.48, pp.826-828.
[26]J. V. Moloney, J. Ariyasu, C. T. Seaton, and G. I. Stegeman, 1986, “Numerical evidence for nonstationary, nonlinear, slab-guided waves,” Opt. Lett., Vol.11, pp.315-317.
[27]J. V. Moloney, J. Ariyasu, C. T. Seaton, and G. I. Stegeman, 1986, “New theoretical developments in nonlinear guided wave stability of TE1 branches,” IEEE J. Quantum Electron., Vol.QE-22, pp.984-987.
[28]L. Leine, Ch. Wachter, U. Langbein, and F. Lederer, 1986, “Propagation phenomena of nonlinear film-guided waves: a numerical analysis,” Opt. Lett., Vol.11, pp.590-592.
[29]Y. Chung and N. Dagli, 1990, “As assessment of finite difference beam propagation method,” IEEE J. Quantum Electron., Vol.26, pp. 1335-1339.
[30]G. I. Stegeman, E. M. Wright, N. Finlayson, R. Zanoni, and C. T. Seaton, 1988, “Third order nonlinear integrated optics,” J. Lightwave Technol., Vol.6, pp.953-990.
[31]R. Y. Ciao, E. Gramire, C. H. Townes, 1964, “Self-trapping of optical beams,” Phys. Leet., Vol.13, pp.479-842.
[32]Y. D. Wu, 2004, “Nonlinear all-Optical switching device by using the spatial soliton collision,” Fiber and Integrated Optics., Vol.23.4, pp.387-404.
[33]Y. D. Wu, M. H. Chen, K. H. Chiang, and R. Z. Tasy, 2003, “New all-optical switching device by using interaction property of spatial optical solitons in uniform nonlinear medium,” Optics and Potonics Taiwan Ⅲ., pp.215.
[34]Y. D. Wu, B. X. Huang, 2003, “All-optical switching device by using the interaction of spatial solitons,” Optics and Potonics Taiwan Ⅲ., pp.164.
[35]F. Garzia, C. Sibilia, and M. Bertolotii, 2001, “New phase modulation technique based on spatial soliton switching,” IEEE J. Lightwave Tecnol., Vol.19, pp.1036-1050.
[36]Y. D. Wu, M. H. Chen, and C. H. Chu, 2001, “All-optical logic device using bent nonlinear tapered Y-junction waveguide structure,” Fiber and Integrated Optics., Vol.23, pp.517-524.
[37]Y. D. Wu, 2004, “Coupled-soliton all-optical logic device with two parallel tapered waveguides,” Fiber and Integrated Optics., Vol.23, pp.405-414.
[38]N. T. Vukovic, B. Milovanovic, 2001, “ Realization of full set of logic gates for all-optical ultrafast switching,” IEEE Telsiks., pp.500-503.
[39]F. Garzia, C. Sibilia, and M. Bertolotii, 1997, “Swing effect of spatial soliton,” Opt. Commun., Vol. 139, pp.193-198.
[40]M. S. Borelly, J. P. Jue, D. Banerjee, B. Ramamurthy, and B. Mukherjee, 1997, “Optical Components for WDM Lightwave Networks,” Proc. IEEE., Vol.85, pp.12741307.
[41]R.A. Sammut, Q. Y. Li, and C. Pask, 1992, “Variational approximations and mode stability in planar nonlinear waveguides,” J. Opt. Soc. Am. B., Vol.9, pp.884-890.
[42]B. Aceves, J. V. Moloney, and A. C. Newell, 1989, “Theory of light-beam propagation at nonlinear interfaces. I. Equivalent-particle theory for a single interface,” Phy. Rev A., Vol.39, pp.1809-1827.
[43]A. Talneau, L. Le Gouezigou, N. Bouadma, M. Kafesaki, C. M. Soukoulis, and M. Agio, 2002, “Photonic-crystal ultrashort bends with improved transmission and low reflection at 1.55 mm,” Appl. Phys. Lett., Vol.80, pp.547-549.
[44]N. Kawai, K. Inoue, N. Carlsson, N. Ikeda, Y. Sugimoto, K. Asakawa, T. Takemori, 2001, “Confined band gap in an air-bridge type of two-dimensional algaas photonic crystal,” Phys. Rev. Lett., Vol.86, pp.2289-2292.
[45]M. Tokushima, H. Kosaka, A. Tomita, H. Yamada, 2000, “Lightwave propagation through a 120° sharply bent single-line-defect photonic crystal waveguide,” Appl. Phys. Lett., Vol.76, pp.952-954.
[46]M. Qiu, B. Jaskorzynska, 2003, “Design of a channel drop filter in a two-dimensional triangular photonic crystal,” Appl. Phys. Lett., Vol.83, pp.1074-1076.
[47]M.H. Shih, Woo Jun Kim, Wan Kuang, J.R. Cao, Sang-Jun Choi, John D. O_Brien, P. Daniel Dapkus, 2005, “Experimental characterization of the reflectance of 60° waveguide bends in photonic crystal waveguides,” Appl. Phys. Lett., Vol.86 pp.191104-1-191104-3.
[48]A. Chutinan, M. Okano, S. Noda, 2002, “Wider bandwidth with high transmission through waveguide bends in two-dimensional photonic crystal slabs,” Appl. Phys. Lett., Vol.80, pp.1698-1700.
[49]M. Bayindir, E. Ozbay, B. Temelkuran, M.M. Sigalas, C.M. Soukoulis, R. Biswas, K.M. Ho, 2001, “Guiding, bending, and splitting of electromagnetic waves in highly confined photonic crystal waveguides,” Phys. Rev. B., Vol.63, pp.081107-081110.
[50]M. Bayinder, B. Temelkuran, E. Ozbay, 2000, “Photonic-crystal-based beam splitters,” Appl. Phys. Lett., Vol. 77, pp.3902-3904.
[51]T. Sondergaard, K.H. Dridi, 2000, “Energy flow in photonic crystal waveguides,” Phys. Rev. B., Vol.61, pp.15688-15696.
[52]D. Goldring, E. Alperovich, U. Levy, D. Mendlovic, 2005, “Analysis of waveguide-splitter-junction in high-index Silicon-On-Insulator waveguides,” Opt. Expr., Vol.13, pp.2931-2940.
[53]Boscolo, M. Midrio, T.F. Krauss, 2002, “Y junctions in photonic crystal channel waveguides: high transmission and impedance matching,” Opt. Lett., Vol.27, pp.1001-1003.
[54]N. J. Florous, K. Saitoh, and M. Koshiba, 2005, “Three-color photonic crystal demultiplexer based on ultralow-refractive-index metamaterial technology,” Opt. Lett., Vol. 30, pp. 2736-2738.
[55]T. Niemi, L. H. Frandsen, K. K. Hede, A. Harpoth, P. I. Borel, and M. Kristensen, 2006, “Wavelength-division demultiplexing using photonic crystal waveguides,” IEEE Photonics. Technol. Lett., Vol. 18, pp. 226-228.
[56]K. H. Hwang, and G. H. Song, 2005, “Design of a high-Q channel add-drop multiplexer based on the two-dimensional photonic-crystal membrane structure,” Opt. Expr., Vol.13, pp.1948-1957.
[57]S. Kim, I. Park, H. Lim, and C. S. Kee, 2004, “Highly efficient photonic crystal-based multichannel drop filters of three-port system with reflection feedback,” Opt. Expr., Vol.22, pp. 5518-5525.
[58]A. Martinez, F. Cuesta, and J. Marti, 2003, “Ultrashort 2-D photonic crystal directional couplers,” IEEE Photonics. Technol. Lett., Vol.15, pp.694-696.
[59]A. S. Jugessur, A. Bakhtazad, A. G. Kirk, 2006, “Compact and integrated 2-D photonic crystal super-prism filter-device for wavelength demultiplexing applications,” Opt. Expr., Vol.14, pp. 1632-1642.
[60]G. Tayeb, and D. Maystre, 1997, “Rigorous theoretical study of finite-size two-dimensional photonic crystals doped by microcavities,” J. Opt. Soc. Amer. A., Vol.14, pp.3323-3332.
[61]H. A. Haus, 1984, Waves and Field in Optoelectronics, Prentice-Hall.
[62]H. A. Haus and Y. Lai, 1992, “Theory of cascaded quarter wave shifted distributed feedback resonators,” J. Quantum. Electron., Vol.28, pp.205-213.
[63]P. Lalane, 2002, “Electromagnetic analysis of photonic crystals waveguides operating above the ligth cone,” IEEE J. Quantum Electron., Vol.38, pp.800-804.
[64]M. Imada, S. Noda, A. Chutina, M. Mochizuki, and T. Tanaka, 2002, “Channel drop filter using a single defect in a 2-d photonic crystal slab waveguide,” J. Lightwave Technol., Vol.20, pp. 873-878.
[65]S. Oliver,H. Benisty, C. Weisbuch, C. J. M. Smith, T. F.Krauss, R. Houdre, and U. Oesterle, 2002, “Improved 60° bend transmission of submicron-width waveguides defined in two-dimensional photonic crystals,” J. Lightwave Technol., Vol.20, pp. 1198-1203.
[66]T. J. Karle, D. H. Brown, R. Wilson, M. Steer, and T. F. Krauss, 2002, “Planar photonic crystal coupled cavity waveguides,” IEEE J. Selec. Topics In Quantum Electron., Vol. 8, pp.909-918.
[67]S. Kuchinsdy, V. Y. Golyatin, A. Y. Kutikov, T. P. Pearsall, and D. Nedeljkovic, 2002, “Coupling between photonic crystal waveguides,” IEEE J. Quantum Electron., Vol.38, pp.1349-1352.
[68]S. Boscolo, M. Midrio, and C. G. Someda, 2002, “Coupling and decoupling of electromagnetic waves in parrlled 2-D photonic crystal waveguides,” J. Quantum Electron., Vol.38, pp. 47-53.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
1. 吳文琴(2003):國立空中大學網路學習社群電腦資訊素養析論。隔空教育論叢,15,55-77。
2. 王全世(2000):資訊科技融入教學之意義與內涵。 資訊與教育,80,23-31。
3. 羅綸新、胡育如和胡久樹(2004): 師資生資訊素養自評結果之評析。教學科技與媒體,69,55-67。
4. 劉世雄(1999):國小教師運用資訊科技融入教學策略之探討。資訊與教育,78,60-66。
5. 溫嘉榮(1999):資訊與電腦網路科技對教師的衝擊。資訊與教育,72,8-14。
6. 溫明正(2000):教室電腦教學的應用。資訊與教育,77,8-14。
7. 張國恩(1999):資訊融入各科教學之內涵與實施。資訊與教育,72,2-9。
8. 葉燈超(2003):從教師資訊能力談「資訊科技融入學科教學」之困境及因應之道--以內湖高工為例。資訊與教育,95,69-74。
9. 黃勝發(2002):找出教師使用資訊科技融入教學意願因素。師說,167,17-19。
10. 郭碧明(2003):大學生資訊素養與網路認知之探討:以高師大學生為例。圖書與資訊學刊,46,11-27。
11. 胡泰達(2004):資訊融入教學在課程上之應用。南投文教,20,38-40。
12. 林美和(1996):資訊素養與終生學習的關係。社教雙月刊,73,7-12。
13. 林正彬(2003)有效提升國小教師參與資訊融入教學之策略。研習資訊,20(1),65-75。
14. 何榮桂(2002):台灣資訊教育的現況與發展—兼論資訊科技融入教學。資訊與教育,87,22-56。
15. 李德竹(2001):圖書館資訊素養之培養方針與評量指標。圖書與資訊學刊,37,1- 26。