英文參考文獻
Banning, J. a. K., L. (1974). An ecological perspective and model for campus design. The Personnel and Guidance Journal, 52, pp. 370-375.
Billsus, D., and Pazzani, M. J. (1998). Learning Collaborative Information Filters. In Proceedings of the Fifteenth International Conference on Machine Learning (Madison, WI, 1998), Morgan Kaufmann, pp. 46-53.
BM Sarwar, G. K., JA Konstan, J Reidl. (2001). Item-Based Collaborative Filtering Recommendation Algorithms. In Proc. of the 10th International World Wide Web Conference (WWW10), Data Mining and Knowledge Discovery.
Brewer, G. (1992). Studied Simplicity: David Mamet's On Directing Film. Literature Film Quarterly 20, pp. 167-68.
Brin, S., Motwani, R.,Ullman, J. D., and Tsur, S. (1997). Dynamic itemset counting and implication rules for market basket data. In ACM SIGMOD International Conference On the Management of Data, 26(2), pp. 255-264.
Chen, Z. (2001). Data mining and uncertain reasoning: an integrated approach John Wiley & Sons.
Cho, Y. H. a. J. K. (2004). Application of Web Usage Mining and Product Taxonomy to Collaborative Recommendations in E-Commerce. Expert Systems with Applications Vol. 26, No. 2, pp.233-246
DeVellis, R. F. (1991). Scale Development: Theory and Applications. Newbury Park,. CA: SAGE Publications. .
Goldberg, D., David Nichols, Brian M. Oki, and Douglas Terry. (1992). Using Collaboratie Filtering to Weave an Information Tapestry. Communications of the ACM, Vol. 35, No.23 pp.61-70.
Good, N., Schafer, B., Konstan, J., Borchers, A., Sarwar, B., Herlocker, J., and Riedl, J. (1999). Combining Collaborative Filtering With Personal Agents for Better Recommendation. In Proceedings of the AAAI'99 conference, pp. 439-446.
Han, j., & Kamber, M. . (2000). Data mining:Concepts and techniques. San Francisco:Morgan Kaufmann Publishers.
J.Hipp, U. G., and G. Nakhaeizadeh. (2000). Algorithms for Association Rule Mining- A General Survey and Comparison. ACM SIGKDD Exploration, vol.2, Issue 1, p.58-63, p.p.58-63.
John s. Breese, D. H., and Carl Kadie. (1998). Empirical Analysis of Predictive Algorithms for Collaborative Filtering. Appears in Proceedings of the Fourteenth Conference on Uncertainty in Artificial Intelligence, Madison, WI, July.
Kerlinger, F. N. (1986). Foundations of behavioral research (3rd. ed.). . Fort Worth, TX: Holt, Rinehart, and Winston.
Meteren, R. v. a. S., Marrten van. (2000). Using Content-Based Filtering for Recommendation. Proceedings of ECML Workshop:Machine Learning in New Information age, pp.47-56.
Nunnally. (1978). Psychometric theory (2nd ed.). . New York: McGraw-Hill.
Park, J. S., Chen, M. S.,and Yu, P. S. (1995). An effective hash-based algorithm for mining association rules. Proceedings of ACM SIGMOD International Conference on Management of Data, pp. 175-186.
Resnick, P., Iacovou, N., Suchak, M., Bergstrom, P. and Riedl, J. (1994). GroupLens: An Open Architecture for Collaborative Filtering of Netnews. pRoceedings of CSCW '94. Chapel Hill, NC.
S. Brin, R. M., J. D. Ullman, and S. Tsur. (1997). Dynamic itemset counting and implication rules for market basket data. In ACM SIGMOD International Conference On the Management of Data, p.p. 255-264.
Savasere, A., Omiecinski, E., and Navathe, S. (1995). An Efficient Algorithm for Mining Association Rules in Large Databases. In: Proc. of Int. Conf. on Very Large Data Bases, pp. 432-443.
中文參考文獻
吳明隆 (民92) 。spss 統計應用學習實務-問卷分析與應用實務 。台北:
知城數位科技。
李麗華、邱永祥 (民92) 。 智慧型線上教學課程推薦機制 。朝陽科技大
學資訊管理研究所碩士論文,已出版,台中。
陳順宇 (民89) 。迴歸分析 。台北:華泰。
楊琇瑗 (民92) 。利用資料倉儲與資料探勘技術於招生策略與學生特質分
析之研究 。中原大學資訊管理學系碩士論文,已出版,桃園。
劉信義、張瑞益 (民94) 。關聯法則挖礦法之研究-採用群聚壓縮樹演算
法 。中原大學電子工程研究所碩士論文,已出版,桃園。。
鄭旭峰 (民89) 。運用資料挖掘技術於個人化網路廣告系統之建置 。私
立逢甲大學企業管理研究所碩士論文,已出版,台中。
顏博文 (民92) 。應用資料探勘技術分析學生選課特性與學業表現 。中
原大學資訊管理學系碩士論文,已出版,桃園。
黃智育 (民91) 。資料探勘於即時線上推薦系統之用研究 。朝陽科技大學資訊管理學系碩士論文,已出版,台中。溫侑柯 (民95) 。應用資料探勘之關聯法則探討大學入學成績對在學成績的影響-以資料系為例 。南華大學資訊管理學系碩士論文,已出版,
雲林。
謝育勳 (民89) 。員工知識管理系統之設計與發展-資料採擷技術之應用 。
國立中央大學人力資源管理研究所碩士論文,已出版,桃園。
童宜慧、張基成 (民85) 。網路化學習歷程檔案系統 。ICCAI 國際電腦輔
助教學研討會第八屆,台中。
吳清山、林天祐 (民86) 。教育名詞:卷宗評量 。教育資料與研究,69。
余民寧 (民92) 。多元智力理論教學評量的省思 。教育研究月刊,110,57-67。