跳到主要內容

臺灣博碩士論文加值系統

(44.192.247.184) 您好!臺灣時間:2023/02/06 11:39
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:楊閎智
研究生(外文):Hong-Zhi Yang
論文名稱:模糊控制系統穩定度的分析與設計-多重李雅普諾夫函數法
論文名稱(外文):Stabilization of T-S Fuzzy Control Systems via the Multiple Lyapunov Function Approach
指導教授:方俊雄方俊雄引用關係
指導教授(外文):Chun-Hsiung Fang
學位類別:碩士
校院名稱:國立高雄應用科技大學
系所名稱:電機工程系碩士班
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2006
畢業學年度:94
語文別:英文
論文頁數:52
中文關鍵詞:T-S 模糊系統多重李雅普諾夫函數法三指標組合技術線性矩陣不等式可穩定化條件
外文關鍵詞:T-S fuzzy systemslinear matrix inequality (LMI)three-index combinationstate feedback control
相關次數:
  • 被引用被引用:1
  • 點閱點閱:696
  • 評分評分:
  • 下載下載:78
  • 收藏至我的研究室書目清單書目收藏:0
本論文針對連續及離散T-S 模糊系統,利用多重李雅普諾夫函數法,並引進三指標組合技術設計狀態回授控制器,建立更寬鬆的二次可穩定化條件,所有的結果以線性矩陣不等式型式表示。由於連續與離散系統使用的李雅普諾夫函數型式不同,因此本論文使用不同的狀態回授控制器之型式對應推導。尤其是連續系統的控制器型式,比現有文獻更簡單且易於實現。最後,於每章最後一節附上一些數值模擬的例題,驗證本論文方法實際應用的可行性。
This thesis proposes a more relaxed stabilization condition and then designs a state feedback controller via the multiple Lyapunov function approach for continuous time and discrete time T-S fuzzy systems. All the results are represented in the form of linear matrix inequalities (LMIs). Due to the different types of Lyapunov functions for continuous-time and discrete-time systems, the forms of state feedback controllers for both systems are also different. Particularly, for continuous-time cases, the form of the proposed controller is much simpler and more realizable. At the end of Chapter 3 and Chapter 4, some practical examples are given to illustrate the proposed ideas.
摘 要 i
Abstract ii
致 謝 iii
List of Figures v
Nomenclature vi
Chapter 1 Introduction 1
1-1 Motivation and Overview 1
1-2 Organization of the Thesis 3
Chapter 2 Problem Formulation and Preliminaries 4
2-1 The T-S Fuzzy System 4
2-2 Control Objectives 6
2-3 Preliminary Lemmas 6
Chapter 3 Stabilization of Continuous-Time T-S Fuzzy Systems 9
3-1 Stabilization of Continuous-Time T-S Fuzzy Systems 9
3-2 Comparison of Relaxation for Stabilization Conditions 17
3-3 A Numerical Example 18
Chapter 4 Stabilization of Discrete-Time T-S Fuzzy Systems 22
4-1 Stabilization of Discrete-Time T-S Fuzzy Systems 22
4-2 Comparison of Relaxation for Stabilization Conditions 35
4-3 Numerical Examples 40
Chapter 5 Conclusions 48
References 50
[1] B.-C. Ding, H.-X. Sun, and Peng Yang, “Further studies on LMI-based stabilization conditions for nonlinear systems in Takagi-Sugeno’s form,” Automatica, vol. 42, no. 4, pp. 503-508, 2006.
[2] Chun-Hsiung Fang, Y.-S. Liu, S.-W. Kau, L. Hong, and C.-H. Lee, “A new LMI-based approach to relaxed quadratic stabilization of T-S fuzzy control systems,” IEEE Trans. on Fuzzy System, vol. 14, no. 3, pp. 386-397, Jun. 2006.
[3] E. Kim and H. Lee, “New approaches to relaxed quadratic stability condition of fuzzy control systems,” IEEE Trans. Fuzzy Systems, vol. 8, no. 5, pp. 523-534, Oct. 2000.
[4] G.. Feng, “Stability Analysis of piecewise discrete-time linear systems,” IEEE Trans. on Automatic Control, vol. 47, no. 7, pp. 1108-1112, July. 2002.
[5] G. Feng, C.-L. Chen, D. Sun and Y. Zhu, “H∞ Controller Synthesis of Fuzzy Dynamic Systems Based on Piecewise Lyapunov Functions and Bilinear Matrix Inequalities,” IEEE Trans. on Fuzzy Systems, vol. 13, no. 1, pp. 94-103, Feb. 2005.
[6] G..-J. Klir and B. Yuan, Fuzzy Sets and Fuzzy Logic Theory and Applications, Prentice Hall, Englewood Cliffs, NJ, 1995.
[7] H. O. Wang, K. Tanaka, and M. F. Griffin, “An approach to fuzzy control of nonlinear systems: stability and design issues,” IEEE Trans.on Fuzzy Systems, vol. 4, no. 1, pp. 14-23, 1996.
[8] K. Tanaka and H. O. Wang, Fuzzy Control Systems Design and Analysis. John Wiley & Sons, Inc, New York, 2001.
[9] K. Tanaka and M. Sugeno, “Stability analysis and design of fuzzy control systems,” Fuzzy Sets and Systems, vol. 45, pp. 135-156, 1992.
[10] K. Tanaka, T. Ikeda, and H. O. Wang, “Design of fuzzy control systems based on relaxed LMI stability conditions,” Proc. of 35th CDC, pp. 598-603, 1996.
[11] K. Tanaka, T. Ikeda, and H. O. Wang, “Fuzzy regulators and fuzzy observers: relaxed stability conditions and LMI-based designs,” IEEE Trans. Fuzzy Systems, vol. 6, no. 2, pp. 250-265, May, 1998.
[12]K. Tanaka, T. Hori, and H. O. Wang, “A Multiple Lyapunov Function Approach to Stabilization of Fuzzy Control Systems,” IEEE Transactions on Fuzzy Systems, vol. 11, no. 4, pp. 582-589, Aug. 2003.
[13]K. Tanaka, T. Hori and H. O. Wang, “A Fuzzy Lyapunov Approach to Fuzzy Control System Design,” Proceeding of the American Control Conference, pp. 4790-4795, Jun. 2001.
[14] K. Tanaka, and M. Sano, “A robust stabilization problem of fuzzy control systems and its application to backing up control of a truck-trailer,” IEEE Trans. Fuzzy Systems, vol. 2, no. 2, pp. 119-134, 1994.
[15] L.-X. Wang, A Course in Fuzzy Systems and Control. Prentice-Hall Inc, London, 1997.
[16] L. Wang and G. Feng, “Piecewise H∞ Controller Design of Discrete-Time Fuzzy Systems,” IEEE Trans. on Systems, Man, and Cybernetics, Part B, vol. 34, no. 1, pp. 682-686, Feb. 2004.
[17] M. C. de Oliveira, J. Bernussou, and J. C. Geromel, “A new discrete-time robust stability condition,” System & Control Letters, vol. 37, pp. 261-265, 1999.
[18] M. Johansson, A. Rantzer and K.-E. Arzen, “Piecewise Quadratic Stability of Fuzzy Systems,” IEEE Trans. on Fuzzy Systems, vol. 7, no. 6, pp. 713-722, Sep. 1999.
[19]P. Gahinet, A. Nemirovski, A. Laub, and M. Chilali, The LMI control toolbox, Math Works Inc, 1995.
[20] S. Boyd, L. El Ghaoui, E. Feron, and V. Balakrishnan, Linear Matrix Inequalities in Systems and Control Theory, SIAM Press, Philadelphia, 1994.
[21] T. Takagi and M. Sugeno, “Fuzzy identification of systems and its application to modeling and control,” IEEE Trans. Syst., Man, Cybern., vol. 15, pp. 116-132, Feb. 1985.
[22] T.-M. Guerra, W. Perruquetti, “Non quadratic stabilisation of discrete Takagi-Sugeno fuzzy models,” Proceeding of the IEEE International Fuzzy Systems Conference, pp. 1271-1274, 2001.
[23]T.-M. Guerra, L. Vermeiren, “LMI-based relaxed nonquadratic stabilization conditions for nonlinear systems in the Takagi-Sugeno’s form,” Automatica, vol. 40, pp. 823–829, 2003.
[24] W.-J. Wang and C.-H. Sun, “A Relaxed Stability Criterion for T-S Fuzzy Discrete System,” IEEE Trans. on Systems, Man, and Cybernetics, Part B, vol. 34, no. 5, pp. 2155-2158, Oct. 2004.
[25] X. Liu and Q. Zhang, “New approaches to H∞ controller designs based on fuzzy observers for T-S fuzzy systems via LMI,” Automatica, vol. 39, no. 9, pp. 1571-1582, Sep. 2003.
[26] Y. Wang, Z.-Q. Sun, and F.-C. Sun, “Stability Analysis and Control of Discrete-time Fuzzy Systems:A Fuzzy Lyapunov Function Approach,” ASCC, pp. 1865-1870, 2004.
[27] Z.-H. Xiu and G. Ren, “Stability analysis and systematic design of Takagi-Sugeno fuzzy control systems,” Fuzzy Sets and Systems, vol. 151, pp.119-138, 2005.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top