跳到主要內容

臺灣博碩士論文加值系統

(44.222.134.250) 您好!臺灣時間:2024/10/08 04:32
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:羅國欣
研究生(外文):Kuo-Hsin Lo
論文名稱:智慧型系統於配電系統工作停電規劃之應用
論文名稱(外文):Application of Intelligent Systems to Outage Scheduling of Electrical Distribution Systems
指導教授:吳兆祥
指導教授(外文):Jaw-Shyang Wu
學位類別:碩士
校院名稱:國立高雄應用科技大學
系所名稱:電機工程系碩士班
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2006
畢業學年度:94
語文別:中文
中文關鍵詞:配電系統工作停電非必要性停電規則式規劃進化演算法
外文關鍵詞:electrical distribution systemsworking outageunnecessary interruptionrule-based programmingevolutionary algorithms
相關次數:
  • 被引用被引用:1
  • 點閱點閱:409
  • 評分評分:
  • 下載下載:85
  • 收藏至我的研究室書目清單書目收藏:0
配電系統工作停電為配電系統擴充或維修的常態性工作,其停電規劃之良莠攸關供電服務品質的好壞。此工作停電規劃之問題乃要對各個工作區域安排適當之停電工作時程及所應派遣之工作班隊,其本質上為離散性且非線性之多目標問題。本論文提出以規則式推論法及進化演算法兩種智慧型方式求解。於求解過程中,考慮停電時間的停電量並考慮平均分配各工作隊之工作時數,亦考慮同一條饋線上的工作停電區域由相同的工作隊進行施工。
在規則式排程求解過程中,本論文利用停電區之複合式負載特性並結合停供電能之可靠度指標提出區域之工作停電之可靠度等級表列(the Set of Reliability Grade Variation, SRGV),SRGV將使得停電排程規劃更容易滿足必要的限制條件,並且可以得到較佳的排程規劃。
利用進化演算法之求解過程中,本論文以實數編碼的方式進行運算。為了提升實數編碼在交配運算上之交配效果,採用「單點式突變」之交配方式進行運算。本論文中在每一次的演化過程結束時,保留適應值最佳之染色體以提高執行效率。在執行多次運算後,比較每次之結果並由中挑選擁有最佳特性之染色體為最佳解。
為了驗證所提方法之可行性,本論文對兩個架空配電系統進行工作停電區域排程規劃之模擬。由模擬結果可得知本論文所提出之兩種智慧型規劃方法,均可以有效率地求解出配電系統工作停電排程之規劃,其中規則式排程可以有較高的規劃效率,而進化演算法則可以得到特性較佳的規劃方式。
Outage scheduling for system expansion or/and maintenance are regular works in distribution systems. Appropriate scheduling strategies will enhance the service reliability for customers. It is to find a scheduling with optimal assignment of the team of crew for each of the area to be worked while satisfying practical constraints. The constraints such as engineering during the business time, avoiding unnecessary interruption, and working in some specified time intervals for some service areas are usually must be considered. The outage scheduling inherently is a kind of nonlinear, discrete, and multi-objective problem.
In the rule-based programming, the composite load patterns were used to evaluate the reliability index “Energy Not Supplied”, ENS. By the use of the ENS index, the tables of the Set of Reliability Grade Variation, SRGV, were proposed. The SRGV tables were applied observing the constraints easier, and a suitable schedule was evaluated advanced.
In the evolutionary algorithm, the chromosomes were encoded by real numbers. To enhance the effectiveness of the crossover operation, the “single point mutation” was joined in the crossover operation. After iterations, the chromosome with best fitness value was chosen, and regarded as the optimal solution.
To verify the effectiveness of the proposed approaches, two electrical distribution systems were selected for the computer simulations. It was found that the proposed methodologies provide effective performance.
摘 要.....................................................I
Abstract.................................................III
誌 謝.................................................... V
目 錄....................................................VI
圖 目 錄.................................................IX
表 目 錄................................................ XII
第一章 緒論...............................................1
1-1 研究背景與動機.....................................1
1-2 國內外相關研究概述.................................2
1-3 論文內容概述.......................................4
第二章 配電系統工作停電...................................6
2-1 工作停電的要點.....................................6
2-1-1 工作停電的分類.................................6
2-1-2 工作停電計畫之擬定.............................7
2-1-3 工作停電作業程序...............................9
2-1-4 活線作業......................................11
2-2 負載曲線..........................................13
2-2-1 典型負載曲線..................................13
2-2-2 複合式負載模式的建立..........................14
2-3 工作停電與可靠度..................................15
2-3-1 用戶導向可靠度指標............................16
2-3-2 負載及能量導向的可靠度指標....................17
2-4 工作停電之限制條件................................18
第三章 應用規則式之配電系統工作停電排程..................20
3-1 規則式規劃法......................................20
3-2 應用規則式規劃法於配電系統工作停電排程............22
3-2-1 可靠度等級(SRGV)............................22
3-2-2 工作停電規則與評估函數........................24
3-3 工作停電規劃流程..................................28
第四章 基因演算法規劃配電系統工作停電排程................31
4-1 基因演算法的進化流程..............................31
4-2 配電系統工作停電排程..............................34
4-2-1 問題編碼......................................34
4-2-2 適應函數......................................36
4-2-3 染色體的選擇與複製............................39
4-2-4 交配運算......................................40
4-2-5 突變運算......................................42
4-2-6 終止條件......................................42
4-2-7 工作停電規劃流程..............................42
第五章 實例模擬..........................................47
5-1 九條饋線測試系統..................................47
5-2 三十一條饋線系統..................................47
5-3 規則式規劃之模擬..................................55
5-3-1 模擬一:九條饋線系統之模擬....................55
5-3-2 模擬二:三十一條饋線系統之模擬................63
5-4 基因演算法規劃之模擬..............................65
5-4-1 適應性函數參數之設定..........................65
5-4-2 模擬三:九條饋線系統之模擬....................65
5-4-3 模擬四:九條饋線系統之模擬(部份工作區指定工作時間)..........................................75
5-4-4 模擬五:三十一條饋線系統之模擬................79
5-5 兩種規劃之比較....................................83
第六章 結論與未來研究方向................................86
6-1 結論..............................................86
6-2 未來研究方向......................................87
參考文獻.................................................88
[1] “IEEE recommended practice for the design of reliable industrial and commercial power systems,” IEEE Std 493, 1998.
[2] R. N. Allan, R. Billinton, I. Sjarief, L. Goel, K. S. So, “A reliability test system for educational purposes-basic results,” IEEE Transaction on Power Systems, Vol. 4, pp. 813-820, 1991.
[3] R. Billinton, S. Kumar, N. Chowdhury, K. Debnath, L. Goel, E. Khan, P. Kos, G. Nourbakshs, J. Otegn-Adjei, “A reliability test system for educational pruposes-basic data,” IEEE Transaction on Power Systems, Vol. 4, pp.1238-1244, 1998
[4] W. H. Kersting, W. H. Phillips, R. C. Doyle, “Distribution feeder reliability studies,” IEEE Conference on Industry Applications, Vol. 35, pp. 319-323, 1999
[5] T. F. Tsao, H. C. Chang, “Composite reliability evaluation model for different types of distribution systems,” IEEE Transaction on Power Systems, Vol. 18, pp. 924-930, 2003
[6] 張宏展, 彭銘盛,“配電系統之可靠度與成本效益評估”, 國立台灣科技大學電機工程研究所, 2000.
[7] J. Endrenyi, S. Aboresheid, R. N. Allan, G. J. Anders, S. Asgarpoor, R. Billinton, N. Chowdhury, E. N. Dialynas, M. Fipper, R. H. Fletcher, C. Grigg, J. McCalley, S. Meliopoulos, T. C. Mielnik, P. Nitu, N. Rau, N. D. Reppen, L. Salvaderi, A. Schneider, Ch. Singh, “The present status of maintenance strategies and the impact on reliability”, IEEE Transaction on Power Systems, Vol. 16, pp. 638-646, 2001.
[8] R. H. Stillman, “Power line maintenance with minimal repair and replacement,” Proceedings annual reliability and maintainability symposium, pp. 541-545, 2003.
[9] W. G. John, “Applying reliability centered maintenance to overhead electric utility distribution systems,” IEEE Conference on Power Engineering Society Transmission and Distribution, pp. 566-569, 2000.
[10] R. Loganantharaj, “Efficient temporal propagation algorithm for scheduling,” Fifth International Workshop on Temporal Representation and Reasoning, pp. 156-161, 1998.
[11] M. J. Mondro, “Approximation of mean time between failure when a system has periodic maintenance,” IEEE Transaction on Reliability, Vol. 51, pp. 166-167, 2002.
[12] T. Zhang, M. Nakamura, H. Hatazaki, “Optimizing maintenance scheduling of equipment by element maintenance interval adjustment considering system availability,” IEEE Power Engineering Society Winter Meeting, Vol. 1, pp. 205-210, 2002.
[13] R. Billinton, Pan Jun, “Optimal maintenance scheduling in a parallel redundant system consisting of series components in each branch”, IEEE Transaction on Power Delivery, Vol. 14, pp. 928-933, 1999
[14] George F. Luger, William A. Stubblefield, “Artificial Intelligence 2Ed.,” The Benjamin/Cummings Publishing Company, Inc, 1993.
[15] Michael Negnevitsky, “Artificial Intelliegence,” PEARSON, 2002.
[16] 林堯瑞, 馬少平, “人工智慧導論,” 儒林圖書公司, 1992.
[17] 孫家麟, 陳錦章, 陳金堂, 王建造, 郭秋勳, “人工智慧”, 松崗電腦圖書資料有限公司, 1989.
[18] H. Ogi, Y. Takeshima, J. Shinohara, K. Haruki, “An expert system with cognitive model for power system outage scheduling,” IEEE Conference on Power Industry Computer Application, pp. 179-185, 1989
[19] K. Kawahara, H. Sasaki, J. Kubokawa, H. Asahara, K. Sugiyama, “A proposal of a supporting expert system for outage planning of electric power facilities retaining high power supply reliability,” IEEE Transaction on Power Systems, Vol. 13, pp. 1453-1458, 1998
[20] K. L. Butler, “An expert system based framework for in incipient failure detection and predictive maintenance system,” IEEE Conference on Intelligent System Applications to Power Systems, pp. 321-326, 1996
[21] J. G. Rolim, C. R. Silva Filho, “An intelligent tool for maintenance scheduling of distribution systems,” Internation Conference on Electric Utility Deregulation and Restructuring and Power Technologies, pp. 215-220, 2000
[22] C. P. Gomes, D. Smith, S. Westfold, “Synthesis of schedulers for planned shutdowns of power plants”, IEEE Conference on Knowledge-Based Software Engineering, pp. 25-28, 1996.
[23] S. F. Noor, J. R. McDonald, “Forced-Outage rates of generating units based on expert evaluation”, IEEE Transaction on Reliability, Vol. 45, pp. 138-140, 1996.
[24] R. Mukerji, H. M. Merrill, B. W. Erickson, J. H. Parker, R. E. Friedman, “Power plant maintenance scheduling: optimization economics and reliability,” IEEE Transaction on Power Systems, Vol. 6, pp. 476-483, 1991.
[25] Mitchell, Melanie, “An introduction to genetic algorithms (Complex adaptive systems)”, Bradford Book, 1998.
[26] 周鵬程, “遺傳演算法原理與應用(修訂版)—活用MATLAB”, 全華科技圖書股份有限公司, 2005.
[27] A. H. Wright, “Genetic algorithms for real parameter optimization,” Foundations of Genetic Algorithms, San Mateo, CA: Morgan Kaufmann, 1991.
[28] K. M. Sharma, P. N. Sreedhar, “Intelligent approach for efficient operation of electrical distribution automation systems”, IEEE Conference on Convergent Technologies for Asia-Pacific Region, Vol. 2, pp. 764-765, 2003.
[29] W. Yang, J. Liu, J. Yu, H. Dong, M. Song, “Optimal allocation of switches in distribution networks,” IEEE Conference on Intelligent Control and Automation, Vol. 6, pp. 5155-5159, 2004.
[30] B. Ye, X. L. Wang, Z. H. Bie, X. F. Wang, “Distribution network reconfiguration for reliability worth enhancement,” IEEE Conference on Power System Technology, Vol. 4, pp.2547-2550, 2002.
[31] R. E. Brown, S. Gupta, R. D. Christie, S. S. Venkata, “A genetic algorithm for reliable distribution system design,” IEEE International Conference on Intelligent Systems Application to Power Systems, Vol. 3, pp.29-33, 1996.
[32] P. A. Kuntz, R. D. Christie, S.S. Venkata, “Optimal vegetation maintenance scheduling of overhead electric power distribution systems,” IEEE Transaction on Power Delivery, Vol. 17, pp. 1164-1169, 2002.
[33] 配電技術手冊—架空配電線路維護, 台灣電力公司.
[34] 配電章則彙編(三)—線路維護, 台灣電力公司.
[35] K. M. Liyanage, C. C. Liu, S. L Muchlinski, A. Eide, “Intelligent systems for distribution automation,” IEEE international conference on Humans, Information and Technology, Vol. 2, pp.1098-1103, 1994.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top