# 臺灣博碩士論文加值系統

(44.200.73.128) 您好！臺灣時間：2024/08/03 09:09

:::

### 詳目顯示

:

• 被引用:1
• 點閱:721
• 評分:
• 下載:198
• 書目收藏:1
 在控制系統的研究中，干擾(disturbance)訊號對系統造成的影響一直是被研究關注的。本篇論文的目的即是為了降低干擾所造成的影響。為了達到這個目的，首先我們將一階及二階含時間延遲系統的頻率響應推導出來並將之分解為暫態項及穩態項，接著定義暫態響應為系統誤差函數(error function)並使之最小化。在設計最佳PID參數時，我們使用殘值定理(residue theorem)來計算誤差平方積分(integral squared-error)並將之作為系統性能標輔以基因演算法(genetic algorithms)來求出最佳PID控制器參數。從例子中我們可以知道，設計出的控制器對於高頻雜訊的抑制效果遠優於低頻雜訊。
 In analysis of control systems, the effect caused by disturbance to systems is always concerned. The objective of this thesis aims at eliminating the disturbance effect. To do this, the system frequency response for first-order and second-order with time-delay systems is first derived and is in terms of a combination of the transient part and the steady-state part. And then the transient response is considered as the system error function to be minimized. To design the optimal parameters of PID controllers, the integral-squared error, which is evaluated by Residue theorem, is defined as the performance index and the genetic algorithm is used to solve optimal parameters. As shown in the presented examples, the high frequency disturbance effect can be more effectively eliminated than the low frequency one.
 摘要 iAbstract ii符號說明 iii目 錄 iv圖 目 錄 vi第一章 緒論 11-1 研究動機 11-2 文獻回顧 11-3 論文綱要 2第二章 基礎理論方法 32-1 ISE性能指標與其殘值參數表示法 32-1.1 ISE基本定義 32-1.2 ISE參數表示法 42-2 基因演算法 62-2.1 基本理論 72-2.2 流程步驟 112-2.3 主要特性 12第三章 降低干擾之最佳控制參數 133-1 問題描述 133-2 誤差函數計算 133-2.1 通式推導 143-2.2 誤差函數例子 183-3 控制器設計 243-3.1 針對多個頻率之控制器設計 243-3.2 針對連續頻段之控制器設計 41第四章 結論 46參 考 文 獻 47
 [1]S. Gutman, “Uncertain dynamical systems - A Lyapunov min-max approach,” IEEE Trans. Automat. Contr., vol. 24, pp. 437-443, 1979.[2]C. M. Kwan, “Sliding mode control of linear systems with mismatched uncertainties.” Automatica, vol. 31, pp. 301-307, 1995.[3]K. Furuta and S. phoojaruenchanachai, “An algebraic approach to discrete-time control problems,” Proc. of ACC, San Diego, CA, pp. 3067-3072, 1990.[4]M. Sampei, T. Mita, Y. Chida, and M. Nakamichi, “A direct approach to control problems using bounded real lemma,” Proc. of the 28th IEEE CDC, pp. 1494-1499, 1989.[5]R. A. Krohling and J. P. Rey, “Design of optimal disturbance rejection PID controllers using genetic algorithms,” IEEE Trans. Evol. Comput., vol. 5, no. 1, pp. 78-82, Feb. 2001.[6]D. Vrancic, J. Kocijan and S. Strmcnik, “Simplified disturbance rejection turning method for PID controllers,” The 5th Asian Contr. Conf., Melbourne, Australia, vol. 1, pp. 460-465 2004.[7]D. Graham and R. C. Lathrop, “The synthesis of ‘optimum’ transient response: Criteria and standard forms,” AIEE Trans. Part II: Applicat. Ind., vol. 72, pp. 273-288, 1953.[8]G. J. Murphy and N. T. Bold, “Optimization based on a square-error criterion with an arbitrary weighting function,” IRE Trans. Automat. Contr., vol. 5, pp. 24-30, Jan. 1960.[9]M. Zhuang and D. P. Atherton, “Automatic tuning of optimum PID controllers,” Proc. Inst. Elect. Eng. D, vol. 140, no. 3, pp. 216-224, 1993.[10]J. B. Conway, Functions of One Complex Variable, 2nd ed, New York: Springer-Verlag, 1978.[11]K. J. Astrom, Introduction to Stochastic Control Theory, New York: Academic, 1970.[12]A. W. Babister, “Determination of the optimum response of linear systems (zero displacement error systems),” Quart. J. Mech. Appl. Math., pt. 4, vol. X, pp. 504-512, 1957.[13]H. Gorecki, “The theorem concerning performance index for dynamic control systems,” Bull. Polish Acad. Sci., vol. 36, no. 3/4, pp. 255-270, 1988.[14]P. Grabowski, “Evaluation of quadratic cost functionals for neutral systems: The frequency-domain approach,” Int. J. Contr., vol. 49, no. 3, pp. 1033-1053, 1989.[15]K. Walton, H. Gorecki, On the evaluation of cost functionals with particular emphasis on time delay systems, IMA J. Mathematical Control and Information., vol. 1, no. 3, pp. 283-306, 1984.[16]K. Walton and J. E. Marshall, “Closed form solutions for time delay systems’ cost functionals,” Int. J. Contr., vol. 39, no. 5, pp. 1063-1071, 1984.[17]K. Walton, B. Ireland, and J. E. Marshall, “Evaluation of weighted functionals for time-delay systems,” Int. J. Contr., vol. 44, no. 6, pp. 1491-1498, 1986.[18]H. Gorecki and L. Popek, “Calculation of the integral squared error for large dynamic systems with many commensurate delays,” Contr. Cybern., vol. 20, no. 2, pp. 33-67, 1991.[19]C. Hwang, Y. H. Chuang, and Y. P. Shih, “Numerical computation of quadratic cost functional for linear systems with multiple delays,” Contr. Comput., vol. 22, no. 3, pp. 90-95, 1995.[20]H. Gorecki and A. Korytowski, Advances in Optimization and stability Analysis of Dynamical Systems. Krakow: AGH, 1993.[21]G. X. Gui, Z. Hashemi, and E. B. Lee, “On calculation of the integral-squared-error for linear time-delay systems,” in Proc. 24th IEEE Conf. Decision Contr., 1985, pp. 868-871.[22]J. H. Hwang, S. Y. Tsay, and C. Hwang, “Computation of quadratic cost functionals for linear systems with multiple time delays.” IEEE Trans. Automat. Contr., vol. 45, no. 4, pp. 800-805, 2000.[23]周鵬程, “遺傳演算法原理與應用-活用Matlab(修正版),” 全華出版社, 2001.[24]張碩, “自動控制系統(第五版),” 鼎茂出版社, 2001.[25]G. Lindfield and J. Penny著, 黃俊銘編譯, “數值方法 : 使用MATLAB程式語言,” 全華出版社, 2003.
 電子全文
 國圖紙本論文
 推文當script無法執行時可按︰推文 網路書籤當script無法執行時可按︰網路書籤 推薦當script無法執行時可按︰推薦 評分當script無法執行時可按︰評分 引用網址當script無法執行時可按︰引用網址 轉寄當script無法執行時可按︰轉寄

 1 模糊PID控制器之設計與模擬

 1 22. 溫俊祥，胡應強，莊妙如，電漿處理技術，92年5月197期，工業材料雜誌 161。 2 16. 劉有台，吳正明，微波電漿源設計技術，91年7月 187期，工業材料雜誌 173。

 1 台灣地區漁民參與漁業推廣教育活動學習滿意度之研究 2 模糊PID控制器之設計與穩定度分析 3 系統輸入具有非線性現象之適應控制器設計 4 微波電漿結合吸收劑轉化四氟化碳 5 基於Chebyshev正交級數之動態系統響應分析之研究 6 浮式與沉底式定置網漁況比較之研究 7 利用紅外線熱像量測技術於散熱器強制對流下之熱傳特性研究 8 一個以多重類別架構為主的多國語言文件分類技術之開發研究 9 線性時間延遲系統控制之最佳PID控制器參數調節 10 溶膠-凝膠法合成NiTiO3陶瓷及其性質研究 11 具尺寸公差與接頭間隙之雙滑塊Watt-II型六連桿肘節機構動力分析與改善設計 12 動態估測器用於不確定線性狀態時間延遲系統之強健控制 13 攜帶偏心螺旋槳之軸系的扭轉與側向耦合振動分析振動分析 14 研究Rersveratrol之甲基衍生物誘發人類大腸直腸癌細胞及其在SCID小鼠體內凋亡之分子機轉 15 適用於無線通訊的陶瓷天線之研製

 簡易查詢 | 進階查詢 | 熱門排行 | 我的研究室