[1] 黃鐘慶,黃佳文,2002年,台電系統負載特性調查研究分析,台電電研所
[2] 台電行業別分類表,台灣電力公司。
[3] 高壓需量用戶抄表日程表,2005年,台灣電力公司。
[4] 洪進翔,2003,“電力需量迴歸模型之網路資料庫系統建置”,國立高雄應用科技大學,碩士論文。[5] 林茂寬,2004,“最適負載管理模式之網路支援系統開發研究”,國立高雄應用科技大學,碩士論文。
[6] 台灣電力公司,1997,台電系統負載特性調查分析研究第二期計畫完成報告。
[7] 台灣電力公司,2003,台電系統饋線負載特性調查研究計畫完成報告。
[8] Yoh-Han Pao, Adaptive Pattern Recognition and Neural Networks , Addison-Wesley Publishing Company, Inc., 1989.
[9] Gail A. Carpenter, Stephen Grossberg, Pattern Recognition By Self-Organizing Neural Network, A Bradford Book, The MIT Press, Cambridge, Massachusetts, IEEE Computer Society., 1989.
[10] Simon Haykin, Neural Network - A Comprehensive Foundation, IEEE Computer Society Press, Sigarpore., 1994.
[11] 葉怡成,2003,類神經網路模式應用與實作,八版,儒林圖書,台北
[12] 曾燕明,1996,“類神經網路於配電系統負載預測及饋線最佳開關操作之應用”,國立中山大學,博士論文。[13] J. Hopfield, “ Neural Networks and Physical Systems with Emergent Collective Computational Abilities, ” Proceeding of the National Academy of Sciences, Vol. 79, 1982, pp. 2554-2558.
[14] M.Riedmiller and H.Braun, “A Direct Adaptive Method for Faster Backpropagation Learning : The RPROP Algorithm” IEEE Conference on Electrical, Insulation Vol.1,pp.586-591,1993”
[15] 羅華強,2001,類神經網路-MATLAB的應用,清蔚科技發行,新竹
[16] Neural Work Professional II and Neural Works Explorer , Neural Ware Inc. Pittsburgh, U.S.A.
[17] 台灣電力公司,2002年4月,長期負載預測(91年105年)。
[18] 施威銘研究室,2000,SQL Server2000管理實務,初版,旗標發行,台北。
[19] 李勁、謝兆陽編著,2000,SQL Server2000資料庫設計與管理,初版,文魁發行,台北。
[20] 胡百敬著,2004, SQL Server效能調校聖經,初版,學貫行銷發行,台北。
[21] 陳徹工作室編著,VISUAL BASIC 6.0資料庫程式設計實務,2001,松崗發行,台北
[22] 彭明柳編著,VISUAL BASIC 6中文專業版徹底研究,2003,二版,博碩文化發行,台北
[23] 張智星,MATLAB程式設計與應用, 2000版,二版,清蔚科技發行,新竹
[24] Amir Aczel,Jayavel Sounderpandian,商用統計學入門與應用,2002,吳啟聰,美商麥格羅.希爾國際股份有限公司台灣分公司發行,台北
[25] Ashok D. Belegundu and Tirupathi R. Chandrupatla, “Optimization Concepts and Applications in Engineering“, Prentice Hall, 1999.
[26] D.Bitton , and D.J.DeWitt , “A Methodology for Database System Performance Evaluation , ”ACM SIGMOD-International Conference on Management of Data May 1984 ,pp.176-185
[27]Grady Booch, “Object Solutions: Managing the Object-Oriented Project”, Benjamin/Cummings Publishing Company , Inc . , 1996
[28] D. Bell and J. Grimson , “Distributed Database System ”,Addison-Wesley (1992)
[29] M. T. Ozsu and P. Valduriez , “Principles of Distributed Database Syatems, ” Prentice-Hall International Book Company ,1992
[30]M.T. Hagan, and S.M. Behr, “ The Time Series Approach To Short Term Load Forecasting, ” IEEE Trans. on Power System, Vol. PWRS-2, No. 3, August 1987, pp 785-791.
[31]J. D. Farmer, J. J. Sidorwich, “ Predicting Chaotic Time Series. ” Physical Review Letters, Vol. 59, No. 8, 1987, pp. 845-848.
[32]T.M. Peng, N.F. Hubele, G.G. Karady, “ Advancement In The Application of Neural Networks for Short-Term Load Forecasting, ” IEEE Trans. On Power Systems, Vol. 7, No. 1, February 1992, pp. 250-257.
[33]K. L. Ho, Y. Y. Hsu, C. C. Yang, “ Short Term Load Forecasting Using A Multilayer Neural Network With An Adaptive Learning Algorithm, ” IEEE Trans. on Power System, Vol. 7, No. 1, February 1992, pp. 141-149.
[34]M. Minsky and S. Papert, Perceptron, MIT Press, 1969.
[35] H. Mori, K. Itou, H. Uematsu, S. Tsuzuki, “An Artificial Neural-Net Based Method for Predicting Power System Voltage Harmonics, ” IEEE Transaction on Power Delivery, Vol. 7, No. 1, January 1992, pp 402-409.
[36]M.C. Brace, J. Schmidt, and M. hadlin, “ Comparison Of The Forecasting Accuracy Of Neural Networks With Other Established Technique, ” Pressing of First International Forum on Application of Neural Networks to Power System, Seattle, July 23-26, 1991.
[37]Y. Y. Hsu and C. C. Tang, “ Design of Artificial Neural Networks for Short-term Load Forecasting, Part I : Self-organising Feature Maps for day Type Identification, ” IEE Proceedings -C, Vol. 138, No. 5, 1991, pp. 407-413.
[38]Richard A.Johnson, Dean W. Wichern, Applied Multivariate Statistical Analysis, Prentice-Hall, Inc., Englewood Cliff, New Jersey, 1982.
[39] H. Kim, Y. Ko, K. H. Jung, “Artificial Neural-Network Based Feeder Reconfiguration for Loss Reduction in Distribution Systems”, IEEE, Trans. on Power Delivery, Vol. 8, No. 3, July 1993, pp. 1356-1366.
[40] B. Kosko, “Neural Network and Fuzzy Systems : A Dynamical Systems Approach to Machine Intelligence, ” Neural-Network, Prentic-Hall, 1992