跳到主要內容

臺灣博碩士論文加值系統

(35.174.62.102) 您好!臺灣時間:2021/07/25 03:37
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:黃國彰
研究生(外文):Guo Zhang Huang
論文名稱:AISI304不鏽鋼受擴孔壓痕及點焊作用下之疲勞裂縫成長遲滯研究
論文名稱(外文):Growth Retardation of Fatigue Crack by Cold Expanded with Ring Indented and Spot heating Methods for AISI 304 Stainless Steel
指導教授:夏冠群夏冠群引用關係宋佩瑄
指導教授(外文):Guan Chyun ShiahPey Shiuan Song
學位類別:碩士
校院名稱:國立高雄應用科技大學
系所名稱:土木工程與防災科技研究所
學門:工程學門
學類:土木工程學類
論文種類:學術論文
論文出版年:2007
畢業學年度:96
語文別:中文
論文頁數:103
中文關鍵詞:AISI304擴孔壓痕點焊殘留壓應力殘留塑性跡應變硬化。
外文關鍵詞:AISI304Cold expandedRing indentedResidual compressive stressResidual plastic wakeStrain hardening
相關次數:
  • 被引用被引用:1
  • 點閱點閱:349
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本文以鑽孔、擴孔加壓痕及點焊,作用在裂縫尖端兩側與前端處,造成殘留壓應力、應變硬化及殘留塑性跡引發裂縫閉合等遲滯機制發生,進而達到裂縫成長遲滯目的。
試驗是以AISI304不鏽鋼CT試片進行鑽孔、擴孔加壓痕之疲勞遲滯實驗,其方法在裂縫尖端兩側距離1mm和2mm位置,進行鑽孔(直徑=2mm)、擴孔(直徑=2.074mm),加上壓痕 (直徑=6mm)及壓痕力量(0KN、6KN、9KN)。另外,點焊為距離裂縫尖端前1mm位置上。由實驗結果得知,對相同壓痕力量而言,擴孔較鑽孔之裂縫成長遲滯較佳,其中擴孔之遲滯循環數達220798。對相同位置而言,壓痕力量越大,裂縫成長遲滯越佳。以點焊加熱位置相同而言,溫度越高,造成殘留壓應力越大,裂縫成長遲滯效果越好。
Drilled, cold expanded with ring indented and spot heating methods were employed for crack-tip on the both sides and front side of the specimens, thus buildup the residual compressive stresses, strain hardening and plasticity induced closure, and lead toward crack growth retardation.
The compact tension specimens of AISI 304 stainless steel were used drilled, cold expanded with ring indented in the fatigue test. The experimental methods were drilled(diameter=2mm ), cold expanded(diameter=2.074mm) and ring indented(diameter=6mm) both sides at 2mm and 1mm position of the crack-tip in the specimen, then apply 0, 6, and 9kN test loads, respectively. In addition, spot heating is at 1mm position of front crack-tip for the specimens. The experimental results showed that, for the same test position, the number of delay cycles result from cold expanded than that of drilled and the number of delay cycles are 220798. For the same position, the stronger test load is, the greater crack growth retardation effect is. For the same position of spot heating, the higher temperature buildup the greater residual compressive stresses, and results in a good crack growth retardation.
目 錄
中文摘要……………………………………………………………………… Ⅰ
英文摘要 …………………………………………………………………… Ⅱ
誌謝 ………………………………………………………………………… Ⅲ
目錄 ………………………………………………………………………… Ⅳ
表目錄 ……………………………………………………………………… Ⅶ
圖目錄 ……………………………………………………………………… Ⅷ
符號說明 …………………………………………………………………… XI

第一章 緒論 …………………………………………………………… 1
1.1 前言………………………………………………………….……… 1
1.2 研究動機……………………………………………………………… 1
1.3 研究目的……………………………………………………………… 2
1.4 研究範圍……………………………………………………………… 2
1.5 研究流程……………………………………………………………… 3

第二章 文獻回顧 ………………………………………………………… 4
2.1 前言…………………………………………………………………… 4
2.2 破壞力學概念………………………………………………………… 4
2.3 疲勞裂縫……………..……………………………………………… 4
2.3.1 疲勞裂縫生成、破壞過程與成長形式…………………………… 4
2.4 應力強度因子………………………………………………………… 5
2.5 疲勞裂縫成長遲滯之機制…………………………………………… 7
2.6 疲勞裂縫成長閉合之機制…………………………………………… 8
2.7 疲勞裂縫成長速率…………………………………………………… 11
2.8 疲勞裂縫修補方法之介紹…………………………………………… 14
2.9 疲勞裂縫閉合與量測………………………………………………… 17
2.9.1 疲勞裂縫閉合……………………………………………………… 17
2.9.2 疲勞裂縫閉合之量測……………………………………………… 18
2.10 小結…………………………………………………………………… 20

第三章 實驗程序架構…………………………………………………… 21
3.1 前言…………………………………………………………………… 21
3.2 AISI304試片化學成分及機械性質………………………………… 21
3.2.1 化學成分…………………………………………………………… 21
3.2.2 機械性質…………………………………………………………… 22
3.3 AISI304試片形狀、尺寸及應力強度因子幅算式………………… 22
3.4 實驗設備……………………………………………………………… 24
3.5 試片拋光與疲勞裂縫預裂…………………………………………… 30
3.5.1 試片拋光…………………………………………………………… 30
3.5.2 黏貼應變計………………………………………………………… 31
3.5.3 試片疲勞裂縫預裂………………………………………………… 31
3.6 實驗試片規劃………………………………………………………… 31
3.7 實驗控制流程………………………………………………………… 32
3.8 鑽孔加壓痕遲滯疲勞裂縫成長效應實驗…………………………… 33
3.9 擴孔加壓痕遲滯疲勞裂縫效應成長實驗…………………………… 34
3.10 點焊遲滯疲勞裂縫成長之效應實驗………………………………… 35
3.11 閉合負載量測………………………………………………………… 38
3.12 實驗資料之處理……………………………………………………… 40
3.13 小結…………………………………………………………………… 41

第四章 實驗結果分析與探討…………………………………………… 42
4.1 前言…………………………………………………………………… 42
4.2 鑽孔加壓痕之遲滯疲勞效應實驗…………………………………… 42
4.2.1 裂尖兩側2mm位置鑽孔直徑=2mm加壓痕器直徑=6mm…………………… 42
4.2.2 裂尖兩側1mm位置鑽孔直徑=2mm加壓痕器直徑=6mm…………………… 46
4.3 擴孔加壓痕之遲滯疲勞效應實驗…………………………………………… 50
4.3.1 裂尖兩側2mm位置擴孔直徑=2.074mm加壓痕器 =6mm………………… 51
4.3.2 裂尖兩側1mm位置擴孔直徑=2.074mm加壓痕器 =6mm………………… 55
4.3.3 鑽孔、擴孔加壓痕力量實驗結果分析…………………………………… 58
4.4 點焊之遲滯疲勞效應實驗………………………………………………… 61
4.4.1 裂尖前1mm位置點焊300℃……………………………………………… 61
4.4.2 裂尖前1mm位置點焊400℃……………………………………………… 64
4.4.3 裂尖前1mm位置點焊500℃……………………………………………… 67
4.4.4 單面與雙面點焊實驗結果分析………………………………………… 70
4.5 實驗結果比較……………………………………………………………… 75
4.6 小結………………………………………………………………………… 75

第五章 結論與建議…………………………………………………………… 77
5.1 結論………………………………………………………………………… 77
5.2 建議………………………………………………………………………… 78
參考文獻…………………………………………………………………………… 79
附錄:實驗試片量測數據………………………………………………………… 90
作者簡歷…………………………………………………………………………… 103
1.Meyers, M.A., Chawla, K.K., Mechanical Metallurgy, Prentice-Hall,N.J. ,1984.
2.Paris, P.C. and Erdogan,F.,1963, “A Critical Analysis of Crack Propagation Laws,” J. of Basic Engng. ,Trans. ASME, D85, .528-534.
3.Elber, W.,1972, “The Significance of Fatigue Crack Closure,” ASTM STP 486, 230-242.
4.Broek, David, 1995,基本工程破裂力學,陳文華,張士欽譯,編譯館,台北,第3-4頁。
5.Broek, David, 1995,基本工程破裂力學,陳文華,張士欽譯,編譯館,台北,第6-7頁。
6.Johan Martinsson.,2005, ”Fatigue Assessment of Complex Welded Steel Structures”., pp.1~19.
7.Griffith, A.A., 1921, “The Phenomena of Rupture and Flow in Solids,” Phil. Trans. Roy. Soc. Of London, A221,pp.163~197.
8.Irwin, G..R., 1947 ,“Fracture of Metals,” American Society of Metals, Cleveland, Ohio, p.147.
9.Irwin, G..R., 1957 ,“Analysis of Stresses and Strains near the End of a Crack Traversing a plate,” J.Appl. Mech., Trans. ASME,24, p.361..
10.Christensen, R.H., 1959 , “Fatigue Crack, Fatigue Damage and Their Direction, Metal Fatigue”, McGraw-Hill, New York.
11.Bathias, C., Vancon, M., 1978, “Mechanism of Overload Effect on Fatigue Crack Propagation of two Aluminium alloys”, Engng. Fract. Mech., Vol.10, No.2, pp.409-424.
12.Schijve, J., Broke, D., 1962, “Crack Propagation. The result of a Test Programme Based on a Gust Spectrum with Variable Amplitude Loading, “ Aircraft Engng., Vol.34, pp.314~316.
13.Knott, J.F., Pickard, A.C., 1977 ,“Effects of Over Loads on Fatigue Crack Propagation : Aluminum Alloys,” Metal Science, pp.399~404.
14.Suresh, S., 1983 ,“micromechanisms of Fatigue Crack Growth Retardation Following Overloads,” Engng. Fract. Mech., Vol.18, No.3, pp.577~593.
15.Suresh, S., 1982, “Crack Growth Retardation Due to Microroughness : A Mechanism for Overload Effects in Fatigue, “ Scripta Metall., Vol.16, pp.995~999
16.Robin, C., Louh, M., Pluvinage, G., 1983, “Influence of an Overload on the Fatigue Crack Growth in steels,” Fatigue of Engng. Mater. And Sturct., Vol.6, No.1, pp1~13.
17.Matsuoka, S., Tanaka, K., 1976, “the Retardation Phenomenon of Fatigue Crack Growth in HT80 Steel,” Engng. Fract. Mech., Vol.8, pp.507~523.
18.Suresh, S., and Ritchie, R. O., 1984,“Near Threshold Fatigue Crack Propagation: a Perspective on the Role of Crack Closure”, Warrendale: The Metallurgical Society of the American Institute of Mining, Mineral and Petroleum Engineers., pp. 227-261.
19.Elber, W., 1970, “Fatigue Crack Closure Under Cyclic Tension,” Engng. Fract. Mech., Vol.2, pp.37~45.
20.Davidson, D.L., 1981, “Plasticity Induced Fatigue Crack Closure,” ASTM STP 982, pp.44~61.
21.Elber, W., 1970,“Fatigue crack closure under cyclic tension”, Engineering Fracture Mechanics, 2, pp. 37-45.
22.Elber, W., 1971,“The significance of fatigue crack growth,”ASTM STP486, American Society for Testing and Material, Philadelphia, pp. 230-241.
23.Suresh, S., Zamiski, G. F., and Ritchie, R. O., 1981,“Oxide-induced Crack Closure: An Explanation for Near Threshold Corrosion Fatigue Crack Growth Behaviour”, Metallurgy Translation A, Vol. 12A, pp. 1435-1443.
24.Tong, Z. S., Li, M. Q., Feng, B. X., and Shi, Y., 1985,“The Corrosion Fatigue of SiCrMoCuV Steel in 3.5﹪NaCl Solution”, Corrosion, Vol. 41 No. 3, pp. 121-126.
25.Ritchie, R. O., Suresh, S., and Moss, C. M., 1980,“Near-threshold Fatigue Crack Growth in 2 1/4 Cr-1Mo Pressure Vessel Steel in Air and Hydrogen”, Journal of Engineering Material and Technology, Vol. 102, pp. 293-299.
26.Way, S., 1935,“Pitting Due to Rolling Contact”, Journal of Applied Mechanics, Vol. 2, pp. 49-58.
27.Endo, K., Okada, T., and Hariya, T., 1972,“Fatigue Crack in Bearing Metal Lining on Steel Plate in Lubricating Oil”, Bulletin of JSME, Vol. 15, pp. 439-445.
28.Endo, K., Okada, T., Komai, K., and Kiyota, M., 1972,“Fatigue Crack Propagation of Steel in Oil”, Bulletin of JSME, Vol. 15, pp. 1316-1233.
29.Pineau, A.G., and Pelloux, R. M., 1974,“Influence of Strain-induced Martensitic Transformations on Fatigue Crack Growth Rates in Stainless Steels”, Metallurgy Translation A, Vol. 5A, pp. 1103-1112.
30.Anderson, T. L., 2005, Fracture mechanics : fundamentals and applications, 3rd ed, pp. 457-464, Boca Raton, Fla. : Taylor & Francis.
31.Fatigue Design Handbook, 1988, AE-10, SAE Inc., p.30.
32.Paris, P. C., and Erdogan, F., 1960,“A Critical Analysis of Crack Propagation Laws”, Journal of Basic Engineering, Vol. 85, pp. 528-534.
33.Forman, R. E., Kermey, V. E., and Engle, R. M., 1967,“A critical Analysis of Crack Propagation Law”, Journal of Basic Engineering, pp. 459-464.
34.Popp, H. G., Wilber, L. G., and Erdeman, V. J., 1971,“Field Practices in the Repair of Fatigue Damaged Jet Engine Components”, ASTM STP 495, pp. 228-253.
35.Manson, S. S., 1971,“Avoidance, Control, and Repair of Fatigue Damage”, ASTM STP 495, pp. 254-346.
36.Rodriguez, J. E., Brennan, F. P., and Dover, W. D., 1998,“Minimization of Stress Concentration Factors in Fatigue Crack Repairs”, International Journal Fatigue, Vol. 20, No. 10, pp. 719-725.
37.Domazet,Z., 1996,“Comparison of Fatigue Crack Retardation Method”, Engineering Failure Analysis, Vol. 3, pp. 137-147.
38.顏洪儒,陳立智,林景正,何健民,林碧蓮,1993,“不銹鋼管破斷的覆焊修補的評估”,中國機械工程學會第十屆學術研討會。
39.Brauny, P., Hammerschmidt, M., and Malik, M., 1985,“Repair of Air-cooled Turbine Vanes of High-performance Aircraft Engines-problems and Experience”, Material Science Technology, Vol. 1, pp. 719-727.
40.徐濟民,吳振宇,蘇毅,1988,“焊接殘留應力對裂紋閉合與疲勞裂紋擴展速率的影響”,清華大學學報,第28卷,第2期,第23-33頁。
41.Linnert, G.E., 1967, Welding Metallurgy, Vo1. 2, American Welding Society, New York.
42.Shin, C. S., Wang, C. M., and Song, P. S., 1996,“Fatigue Damage Repair-A Comparison of Some Possible Methods”, International Journal of Fatigue, Vol. 18, No. 8, pp. 535-546.
43.Broek, D., 1986, Elementary Engineering Fracture Mechanics, 4th edition, Martinus Nijhoff Publishers, pp. 445-449.
44.De Rijk, P., 1970,“Empirical Investigation on Some Methods for Stopping the Growth of Fatigue Cracks”, Natural Aerospace Institude Amsterdam, Report TR 70021.
45.Van Leeuwen, H. P. etal., 1970,“The Repair of Fatigue Cracks in Low Alloy Steel Sheet”, Natural Aerospace Institude Amsterdam, Report TR 70029.
46.Goto. M., Miyagawa, M., and Nisitant, M., 1996“Crack Growth Arresting Property of a Hole and Brinell-Type Dimple”, Fatigue Fracture Engineering Material Structure, Vol. 19, No. 1, pp. 39-49,.
47.Kim, Y. H., Mura, T., and Fine, M. E., 1978,“Fatigue Crack Initiation and Microcrack Growth in 4140 Steel”, Metallurgy Translation A, Vol. 20, pp. 1679-1683.
48.Ghfiri, R., Amrouche, A., Imad, A., and Mesmacque, G., 2000,“Fatigue Life Estimation after Crack Repair in 6005 A-T6 Aluminium Alloy Using the Colding Expansion Hole Technique”, Fatigue Fracture Engineering Material Structure, Vol. 23, pp. 911-916.
49.Miyagawa, H. and Nisitani, H., 1985,“Retardation of Fatigue Crack Propagation Due to Additional Holes or Indentations in Plate Specimens”, Bulletin of JSME, Vol. 28, No. 244, pp. 2219-2223.
50.王楚明,1993,大型304不銹鋼管材疲勞及斷裂現象,國立台灣大學,碩士論文,第87-92頁。
51.Song, P. S., Sheu, B. C., and Chang, L., 2001,“Retardatopm Behaviour of Fatigue Crack Growth Following a Single Overload”, Journal of Chung Cheng Institude of Technology, Vol. 29, No. 2, pp. 45-52.
52.Vardar, O., and Yildirm, N., 1990,“Crack Growth Retardation Due to Intermittent Overloads”, International Journal Fatigue, Vol. 12, No. 4, pp. 283-287.
53.Sadananda, K., Vasudevan, A. K., Holtz, R. L., and Lee, E. U., 1999,“Analysis of Overload Effects and Related Phenomena”, International Journal Fatigue, Vol. 21, pp. S83-S287.
54.Kim, S. H., and Tai, W. P., 1992,“Retardation and Arrest of Fatigue Crack in AISI 4340 Steel by Introducing Rest Periods and Overloads”, Fatigue Fracture Engineering Material Structure, Vol. 15, No. 6, pp. 519-530.
55.Lang, M., and Marci, G., 1999,“The Influence of Single and Multiple Overloads on Fatigue Crack Propagation”, Fracture Engineering Material Structure, Vol. 22, pp. 257-271.
56.Narayanaswami, N., Quintard, M., Petit, J., and de Fouguent, J., 1990, “Environmental Influence on the Effect of a Single Overload on the Fatigue Crack Growth Behavior on a High-Strength Aluminum Alloy”, ASTM STP 1049, pp. 374-390.
57.Wei, X., Li, J., and Ke, W., 1998,“Crack Growth Retardation of Single Overload for A537 Steel in a 3.5﹪NaCl Solution under Cathodic Potential and Free Corrosion Condition”, International Journal Fatigue, Vol. 20, No. 3, pp. 225-231.
58.Chanani, G. R., 1978,“Investigation of Effects of Saltwater on Retardation Behavior of Aluminum Alloys”, ASTM STP 642, pp. 51-73.
59.Yahya, K. T. and Vardar, O., 1996,“Periodic Tensile Overloads in 2024-T3 Al-alloy”, Engineering Fracture Mechanics, Vol. 53, No. 1, pp. 69-77.
60.Shuilong, Y. and Hua, L., 1983,“Interaction of Overloads on Fatigue Crack Growth for 40 CrNi Steel”, Fatigue Fracture Engineering Material Structure, Vol. 6, No. 3, pp. 225-239.
61.Voorwald, H. J. C., Torres, M. A. S., and Pinto, C. C. E., 1991,“Modelling of Fatigue Crack Growth Following Overloads”, International Journal Fatigue, Vol. 13, No. 5, pp. 423-427.
62.徐森煌,1991,304不銹鋼疲勞裂縫之減速現象,國立台灣大學,碩士論文。
63.Sheu, B. C., Song, P. S., and Shin, C. S., 1994,“The Effect of Infiltration Induced Crack Closure on Crack Growth Retardation”, Scripta Metallurgica et Materialia, Vol. 31, No. 10, pp. 1306-1310.
64.Song, P. S., Hwang, S., and Shin, C.S., 1996,“Enhancement in Fatigue Life through Electroplated Nickel-Induced Crack Closure”, Journal of the Chinese Society of Mechanical Engineers, Vol. 17, No. 6, pp. 601-607.
65.Song, P. S., Hwang, S., and Shin, C. S., 1998,“Effect of Artificial Closure Material on Crack Growth Retardation”, Engineering Fatigue Mechanics, Vol. 60, No. 1, pp. 47-58.
66.Song, P. S., Sheu, B. C., and Chou, H. H., 2001,“Deposition of Plating Metals to Improve Crack Growth Life”, International Journal of Fatigue, Vol. 23, No. 3, pp. 259-270.
67.宋佩瑄,陳江泳,周漢興,2002,“裂縫填充造成疲勞裂縫成長遲滯之研究”,中華民國力學學會期刊,第18卷,第1期,第7-15頁。
68.Sharp, P. K., Clayton, J. Q., and Clark, G., 1997,“Retardation and Repair of Fatigue Cracks by Adhesive Infiltration”, Fatigue Fracture Engineering Material Structure, Vol. 20, No. 4, pp. 605-614.
69.Shin, C. S., and Hsu, S. H., 1992,“ Fatigue Life Extension by an Artificially Induced Retardation Mechanism”, Engineering Fracture Mechanics, Vol. 43, No. 4, pp. 677-684.
70.Shin, C. S., and Chen, Z. Z., 2001,“Fatigue Life Extension by Electroless Nickel Infiltration Plating”, International Journal Fatigue, Vol. 23, pp. 777–788.
71.Shin, C. S., Huang, K. C., and Li, R. Z., 1998,“Artificial Retardation of Fatigue crack Growth by the Infiltration of Cracks by Foreign Materials”, Fatigue Fracture Engineering Material Structure, 21, pp. 835-46.
72.Ur-Rehman, R., and Thomason, P. F., 1993,“The Effect of Artificial Fatigue Crack Closure on Fatigue Crack growth”, Fatigue Fracture Engineering Material Structure, Vol. 16, No. 10, pp. 1081-1090.
73.Kitagawa, H., Toyohira, S., and Ikeda, K., 1979,“A New Method of Arresting Fatigue Crack Growth by Artificial Wedge”, International Conference on Fracture Mechanics in Engineering Applications, the Netherland, pp. 281-293.
74.Li, R. Z., 1998,“Investigation on Artificially Induced Fatigue Crack Growth Retardation”, PhD. Thesis, Department of Mechanical Engineering, National Taiwan University.
75.Wang, Y. Y., Zho, M. X., and Feng, D. Q., 1993,“A Study of Retarding Fatigue Crack Growth Using an Artificial Wedge” , Fatigue Fracture Engineering Material Structure., Vol 16, No. 3, pp. 363-376.
76.Ur-Rehman, A., 1992,“An Investigation of Methods of Reduction Fatigue Crack Growth by Artificial Crack-Closure Effects”, PhD. Thesis, Department of Aeronautical and Mechanical Engineering, University of Salford.
77.Vecchio, R. S., Crompton, J. S., and Hertzberg, R. W., 1986,“ Anomalous Aspects of Crack Closure”, International Journal of Fracture, Vol. 31, pp. R29-R33.
78.Chen, D. L., Weiss, B., and Stickler, R., 1996,“A Model for Crack Closure”, Engineering Fracture Mechanics, Vol. 53, No. 4, pp. 493-509.
79.Hertzberg, R. W., Newton, C. H., and Jaccard, R., 1988,“Crack Closure: Correlation and Confusion”, ASTM STP 982, pp. 139-148.
80.Shin, C. S., and Cai. Q. C., 2000,“A Model for Evaluating the Effect of Fatigue Crack Repair by the Infiltration Method”, Fatigue Fracture Engineering Material Structure, Vol. 23, pp. 835-845.
81.Arora, P. R., Dattaguru, B., and Subramanya, H. S., 1992,“The Fatigue Crack Growth Rate in L-72 Al-Alloy Plate Specimens with Cold Worked Holes”, Engineering Fracture Mechanics, Vol. 42, No. 6, pp. 989-1000.
82.Lacarac, V. D., Smith, D. J., and Pavier, M. J., 2001,“The Effect of Cold Expansion on Fatigue Growth from Open Holes at Room and High Temperature”, International Journal Fatigue, Vol. 23, pp. S161-S170.
83.Ball, D. L., and Lowry, D. R., 1998,“Experimental Investigation the Effects of Cold Expansion of Fastener Holes”, Fatigue Fracture Engineering Material Structure, Vol. 21, pp. 17-34.
84.Pell, R. A., Beaver, P. W., Mann, J. Y., and Sparrow, J. G., 1989,“Fatigue of Thick-section Cold-expanded Holes With and Without Cracks”, Fatigue Fracture Engineering Material Structure, Vol. 12, No. 6, pp. 553-567.
85.Ozelton, M. W. and Coyle, T. G., 1986,“Fatigue Life Improvement by Cold Working Fastener Holes in 7050 Aluminum”, ASTM STP 827, pp. 53-71.
86.Su, X., Gu, M., and Yan, M., 1986,“A Simplified Residual Stress Model for Predicting Fatigue Crack Growth Behavior at Coldworked Fastener Holes”, Fatigue Fracture Engineering Material Structure, Vol. 9, No. 1, pp. 57-64.
87.Bernard, M., Bui-Quoc, T., and Burlat, M., 1995,“Effect of Re-coldworking on Fatigue Life Enhancement of a Fastener Hole”, Fatigue Fracture Engineering Material Structure, Vol. 18, No. 7/8, pp. 765-775.
88.Lai, O. M., Oh, J. T., and Nee, Y. C., 1993,“Fatigue Properties of Holes with Residual Stresses”, Engineering Fracture Mechanics, Vol. 45, No. 5, pp. 551-557.
89.Chao, L. and Xiulin, Z., 1992,“Effects of Cold Expansion of a Hole on Fatigue Crack Initiation Location and Life of an Ly12CZ Alloy”, Fatigue Fracture Engineering Material Structure, Vol. 15, No. 3, pp. 241-247.
90.Leno, A., 1998,“Benefits of Split Mandrel Coldworking”, International Journal Fatigue, Vol. 20, No. 1 pp. 1-8.
91.Sack, C. P. and Stephen, R. I., 1989,“Effect of Split-sleeve Cold-expansion on the Fatigue Resistance of a Hot-rolled 1020 Steel”, International Journal Fatigue, Vol. 11, No. 5, pp. 327-334.
92.78. Lacarac, V., Smith, D. J., Pavier, M. J., and Priest, M., 2000,“Fatigue Crack Growth from Plain and Cold Expanded Holes in Aluminium Alloys”, International Journal Fatigue, Vol. 22, pp. 189-203.
93.Miyagawa, H., and Nisitani, H., 1985,“Retardation of Fatigue Crack Propagation Due to Additional Holes or Indentations in Plate Specimens”, Bulletin of JSME, Vol. 28, No. 244, pp. 2219-2223.
94.Goto, M., Miyagawa, H., and Nisitant, H., 1996,“Crack Growth Arresting Property of a Hole and Brinell-Type Dimple”, Fatigue Fracture Engineering Material Structure, Vol. 19, No. 1, pp. 39-49.
95.Song, P. S., and Wen, C. C., 1999,“Crack Closure and Crack Growth Behaviour in Shot Peened Fatigued Specimen”, Engineering Fracture Mechanics, Vol. 63, No. 3, pp. 295-304.
96.Huber, N., Munz, D., and Tsakmakis, C., 1997,“Determination of Young’s Modulus by Spherical Indentation”, Journal Material Research, Vol. 12 No. 9, pp. 2459-2466.
97.Oliver, W. C., and Pharr, G. M., 1992,“An Improved Technique for Determining Hardness and Elastic Modulus Using Load and Displacement Sensing Indentation Experiments”, Journal Material Research, Vol. 7 No. 6, pp. 1564-1583.
98.Xue, Z., Huang, Y., Huang, K. C., and Li, M., 2002,“The Influence of Indenter Tip Radius on the Micro-Indentation Hardness”, Journal of Engineering Material and Technology, Vol. 124, pp. 371-379.
99.John, K. L., 1970,“The Correlation of Indentation Experiments”, Journal Mechanics Physics Solids, Vol. 18, pp.115-121.
100.Shewchuk, J. and Roberts, F. A., 1974,“Increasing the Fatigue Strength of Loaded Holes by Dimpling”, Journal of Engineering Material and Technology, pp. 222-226.
101.Gurney, T. R., 1979, Fatigue of Welded Structures, Cambridge University Press, Cambridge, pp. 323-327.
102.Schijve, J., 1979,“Fatigue Cracks, Plasticity Effects and Crack Closure”, Engineering Fracture Mechanics, Vol. 11, pp. 182-196, 1979.
103.Xu, K. W., He, J. W., and Zhou, H. J., 1994,“Effect of Residual Stress on Fatigue Behavious of Notches”, International Journal Fatigue, Vol. 16, pp. 337-343.
104.Miyagawa, H., and Nisitani, H., 1985,“Retardation of Fatigue Crack Propagation Due to Additional Holes or Indentations in Plate Specimens”, Bulletin of JSME, Vol. 28, No. 244, pp. 2219-2223, Paper No. 84-0318.
105.Goto, M., Miyagawa, H., and Nisitani, H., 1996,“Crack Growth Arresting Property of a Hole and Brinell-type Dimple”, Fatigue Fracture Engineering Material Structure, Vol. 19, No. 1, pp. 39-49.
106.Chen, B. D., Griffiths, J. R., and Lam, Y. C., “The Effects of Simultaneous Overload and Spot Heating on Crack Growth Retardation in Fatigue,” Engng. Fract. Mech., Vol. 44, No. 4, pp. 567-572, 1993.
107.Ray, P. K., Verma, B. B., and Mohanthy, P. K., “Spot Heating Induced Fatigue Crack Growth Retardation,” Int. J. Pres. Ves. and Piping, Vol. 51, pp. 349-59, 1992.
108.B B VERMA and P K RAY., “Fatigue Crack growth retardation in spot heated mild steel sheet”, Bull. Mater. Sci., Vol. 25, No. 4, August 2002, pp. 301-307.
109.D. H. BAE,I. S. SOHN, AND J. K. HONG., “Assessing the effects of residual stresses on the fatigue strength of spot welds.” 2003 January, pp.18~23.
110.P.K. Ray, B.B. Verma, P.K. Mohanthy, “Spot heating induced fatigue crack growth retardation.”
111.P. K. RAY, P. K. RAY and B. B. VERMA., “Astudy on spot heating induced fatigue crack growth retardation.” 2005 Blackwell Publishing Ltd. Fatigue Fract Engng Mater Struct 28,579~585.
112.Elber, W., 1970,“ Fatigue Crack Closure Under Cyclic Tension”, Engineering Fracture Mechanics, Vol. 2, pp. 37-45.
113.Anderson, T. L., 2005, Fracture mechanics : fundamentals and applications, 3rd ed, pp. 465, Boca Raton, Fla. : Taylor & Francis.
114.Schijve, J., 1988,“Fatigue Crack Closure: Observation and Technical Significance”, ASTM STP 982, pp. 5-34.
115.Irving, P. E., Robinson, J. L., and Beevers, C. J., 1983,“Fatigue Crack Closure in Titanium Alloy”, International Journal of Fracture, Vol. 9, pp. 105-108.
116.Buck, O., Ho, C. L., and Marcus, H. L., 1973,“Plasticity Effects in Crack Propagation”, Engineering Fracture Mechanics, Vol. 5, pp. 23-34.
117.Elber, W., 1971,“The Significance of Fatigue Crack Closure”, ASTM STP 486, pp. 230-242.
118.呂璞石、黃振賢,75月7月1日,金屬材料(增訂版),第266~273頁
119.Song, P. S., and Sheu, G. L., 2002,“Retardation of Fatigue Crack Propagation by Indentation Technique”, International Journal of Pressure Vessel and Piping, Vol. 79, No. 11, pp. 725-733.
120.ASTM E647-88a, 1990,“Standard Test Method for Measurement of Fatigue Crack Growth Rate”.
121.蔡賜慶,2000,疲勞裂縫填充修補之評估模式探討,國立台灣大學,碩士論文。
122.趙偉秦* 莊仕政* 周進森** 洪健龍*** 疲勞裂縫延伸速率之測試與分析 工業技術第137期‧中華民國74年11月。
123.Song, P. S., and Shieh, Y. L., 2004,“Stop Drilling Procedure for Fatigue Life Improvement”, International Journal of Fatigue, Vol. 26, No. 12, pp. 1333-1339.
124.徐光良,1996年5月28日,壓痕法延長金屬材料疲勞壽命之研究,中正理工學院,碩士論文,第37-39頁。
125.Fleck, N.A., “Influence of Stress State on Crack Growth Retardaion,” ASTM STP 924, Vol. 1, pp.157-183, 1988.
126.Shin, C. S. and Hsu, S. H., “On the Mechanisms and Behavior of Overload Retardation in AISI 304 Stainless Steel,” Int. J. Fatigue, pp.181-192, 1993.
127.謝游麟,2003年3月,穿透式裂縫與表面裂縫修補之研究,國防中正理工學院,博士論文,第92頁。
128.徐光良,1996年5月,壓痕法延長金屬材料疲勞壽命之研究,國防中正理工學院,碩士論文,第56~63頁。
129.P.K. RAY and B.B. VERMA.,2005, “A study on spot heating induced fatigue crack growth retardation’ , Fatigue fract Engng Mater Struct 28,579-585.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
1. 朱松柏,〈東北亞的軍事平衡與區域安全〉。《韓國學報》,第19期。民95 年6月,頁14-15。
2. 朱松柏,〈北韓核武危機與六方會談〉。《韓國學報》,第19期。民國95 年6月,頁129。
3. 朱松柏,〈北韓的飛彈外交與亞太安全〉。《問題與研究》,39卷2期。民國89年2月,頁1-12。
4. 朱松柏,(朝鮮半島的核武危機)。《問題與研究》,第33卷第7期。民國83年7月,頁2。
5. 王高成,〈從小布希東亞之行看美國亞太戰略〉。《遠景基金會季刊》,3卷3期。民國91年7月,頁75-102。
6. 孔冀斗,〈南北韓政經結構之研究〉。《韓國學報》,第18期。民國93 年6月,頁176-177。
7. 王央城,〈北韓核試對東北亞核武擴散的影響〉。《戰略安全研析》,第19期。民國95年11月,頁13。
8. 丁樹範,〈中國對北韓核武的反應:維持分裂的朝鮮半島〉。《戰略安全研析》,第19期。民國95年11月,頁11。
9. 67. 宋佩瑄,陳江泳,周漢興,2002,“裂縫填充造成疲勞裂縫成長遲滯之研究”,中華民國力學學會期刊,第18卷,第1期,第7-15頁。
10. 朱松柏,〈南北韓高峰會的意義與前景〉。《問題與研究》,39卷10期。民國89年10月 ,頁 45-57。
11. 朱松柏,〈現階段南北韓統一政策之比較〉。《問題與研究》,41卷5期。民國91年9月,頁1-11。
12. 李明,〈現階段中共與北韓關係及其對東北亞安全之影響〉。《收錄於中華民國韓國研究學會韓國學報第18期》。民國93年6月,頁221-222。
13. 李明,〈北韓試射飛彈與南韓的回應〉。《戰略安全研析》,第16期。民國95年8月,頁10。
14. 李明,〈對第四次朝核六方會談結果的思考〉。《戰略安全研析》,第19期。民國94年10月,頁34。
15. 李奎泰,〈論南北韓和台灣關係的現狀與未來〉。《韓國學報》,第18期。民國93年6月,頁128-131。