跳到主要內容

臺灣博碩士論文加值系統

(44.200.27.215) 您好!臺灣時間:2024/04/15 04:39
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:陳威良
研究生(外文):Chen Wei Liang
論文名稱:電熱式微致動器應用於拓樸最佳化微型夾持器之設計與製作
論文名稱(外文):Design and Fabrication of Topology Optimal Miniature Microgripper Integrated with an Electro-Thermal Microactuator
指導教授:黃世疇
指導教授(外文):Huang Shyh Chour
學位類別:碩士
校院名稱:國立高雄應用科技大學
系所名稱:機械與精密工程研究所
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2006
畢業學年度:94
語文別:中文
論文頁數:114
中文關鍵詞:微夾持器電熱式微致動器拓樸最佳化撓性機構LIGA製程
外文關鍵詞:MicrogripperElectro-thermal microactuatorTopology optimalCompliant mechanismLIGA process
相關次數:
  • 被引用被引用:3
  • 點閱點閱:293
  • 評分評分:
  • 下載下載:72
  • 收藏至我的研究室書目清單書目收藏:0
本論文提出將電熱式V型懸樑微致動器應用於拓樸最佳化撓性微夾持機構之探討。在驅動元件部分,設計兩種型式之組合V型懸樑微致動器,以材料熱變形理論與有限元素分析對其設計進行分析模擬,並探討在不同驅動條件下對於輸出性能的影響,以獲得最佳的驅動力。在夾持部分,使用撓性機構配合拓樸最佳化中的桁架結構來定義設計區域,經由電腦運算獲得夾持器主體結構之拓樸外形,結合夾持懸臂使其具備完整的夾持功能。
製程方面是使用UV-LIGA製程來完成微夾持器與微致動器的製作,利用SU-8厚膜光阻來製作微夾持器結構與微致動器電鑄模仁,經由微電鑄製程完成微致動器之結構,其整體組裝尺寸為6.84mm×4.56mm×0.2mm。
經由分析結果得知,使用組合V型懸樑微致動器可獲得較大的驅動力,輸入電壓越大輸出之位移越大,但輸入電壓過高時會驅使結構應力破壞,適合驅動範圍為0.5~1.5V之間。最後量測結果顯示,當輸入1.5V之電壓於微致動器電極端,驅使微夾持器的最大夾持量達18μm。
This study proposes a topology optimal miniature microgripper integrated with an electro-thermal V-shape microactuator. In the driver, we design two types of microactuators that are combined by three similar unit elements using different methods, and then analyze the effect results with different parameters in the theory of material thermal deformation and finite element analysis. Within the grasping part, we use the theory of truss structure topology optimized to define the design domain so as to obtain a topology shape for the main structure of the compliant mechanism after calculation by software. When the compliant mechanism combines two beams, the microgripper has the complete function of grasping.
In fabrication, we use the UV-LIGA process to fabricate the microgripper and microactuator, utilizing SU-8 thick photoresist as a material for the main structure of the microgripper and the electroforming mold for the microactuator. We also built up an all-metal microactuator by using electroforming. After assembly, the dimension of the structure was 6.84mm×4.56mm×0.2mm.
From simulation results, we know the proposed microactuator can obtain large force and displacement. However, with a too high input voltage the structure will break from high stress. The suitable voltage range of the system ranges from 0.5 to 1.5V. Finally, when we applied the voltage of 1.5V, the maximum displacement of microgripper was 18μm.
目 錄
中文摘要........................................................................................................................... i
英文摘要.......................................................................................................................... ii
誌謝................................................................................................................................. iii
目錄................................................................................................................................. iv
圖目錄............................................................................................................................. vi
表目錄............................................................................................................................. ix
符號表.............................................................................................................................. x

第一章 緒論 1
1.1 前言....................................................................................................................1
1.2 微夾持器文獻回顧 ...........................................................................................3
1.3 微致動器簡介 .................................................................................................16
1.4 研究動機與目標..............................................................................................17
1.5 研究方法 .........................................................................................................18
第二章 組合電熱式V型懸樑微致動器 19
2.1 V型電熱式微致動器簡介................................................................................19
2.2 理論說明 .........................................................................................................21
2.2.1 材料電阻值計算...................................................................................21
2.2.2 熱膨脹變形理論...................................................................................21
2.2.3電熱方程式............................................................................................22
2.2.4 熱能平衡理論(Thermal Energy Balance)............................................24
2.2.5 熱應力-應變理論分析..........................................................................27
2.2.6 輸出力與位移理論...............................................................................29
2.3 組合式V型懸樑之分析模擬 .........................................................................33
2.3.1分析之基本假設....................................................................................33
2.3.2有限元素分析之流程............................................................................34
2.3.3 分析結果與討論...................................................................................38
第三章 拓樸最佳化設計之微撓性夾持機構 43
3.1 拓樸最佳化......................................................................................................43
3.2 拓樸最佳化設計概念......................................................................................45
3.2.1 桁架網路分佈法...................................................................................47
3.2.2 定義設計區域.......................................................................................48
3.2.3 拓樸最佳化理論推導...........................................................................49
3.2.4 靈敏度計算分析...................................................................................53
3.2.5 連續二次規劃法...................................................................................57
3.3 拓樸最佳化之位移放大機構 .........................................................................61
3.4 微夾持器的運動與分析 ….............................................................................66
3.4.1 微夾持器模擬與分析...........................................................................66
3.4.2 微夾持撓性機構的運動.......................................................................70
3.5 拓樸最佳化結果與討論 .................................................................................71
第四章 微撓性夾持器製程規劃 74
4.1 微影製程..........................................................................................................74
4.1.1 表面清洗...............................................................................................75
4.1.2 光阻塗佈與靜置...................................................................................76
4.1.3 軟烤(Soft Bake)................................................................................77
4.1.4 曝光.......................................................................................................77
4.1.5 曝後烤(Post-Exposure Bake)...........................................................78
4.1.6 顯影(Development)...........................................................................78
4.1.7 硬烤(Hard Bake)...............................................................................79
4.2 精密電鑄技術 .................................................................................................80
4.3 微影製程製作撓性微夾持器..........................................................................83
4.3.1 光罩設計...............................................................................................83
4.3.2 微夾持器製程步驟...............................................................................84
4.4 微電鑄技術製作組合式微致動器 .................................................................88
4.4.1 光罩設計...............................................................................................88
4.4.2 微致動器製程步驟...............................................................................89
4.5 製程問題與探討..............................................................................................95
4.5.1 光罩設計與製作...................................................................................95
4.5.2 曝光劑量、平坦度及附著性.................................................................97
4.5.3 烘烤、顯影............................................................................................99
第五章 微撓性夾持器之組裝與量測 101
5.1量測儀器與實驗設備......................................................................................102
5.1.1 表面粗糙度量測.................................................................................102
5.1.2 結構厚度量測.....................................................................................103
5.1.3 夾持裝置動態量測.............................................................................104
5.2 量測結果與討論............................................................................................104
第六章 結論與建議 107
6.1 結論 ...............................................................................................................107
6.2 建議與未來展望............................................................................................109
參考文獻 110
[1]M. Mehregany, K.J. Gabriel, and W.S. Trimmer, 1988, “Integrated fabrication of polysilicon mechanisms,” IEEE Trans. Electron Devices, Vol. 35, No. 6, pp. 719-723.
[2]L. Y. Chen, Z. L. Zhang, J. J. Yao, D. C. Thomas, and N. C. MacDonald, 1989, “Selective Chemical Vapor Deposition of Tungsten for Microdynamic Structures,” Proc. IEEE Micro Electro Mechanical Systems Workshop, pp. 82-87.
[3]C. J. Kim, A. P. Pisano, R. S. Muller, 1992, “Silicon-Processed Overhanging Microgripper,” Microelectromech. Sys., Vol. 1, No. 1, pp. 31-36.
[4]Chris G. Keller, Roger T. Howe, Transducers, 1995, “Nickel-Filled Hexsil Thermally Actuated Tweezers,” The 8th Intemational Conference on Solid-State Sensors and Actuators, pp. 376-379.
[5]http://www.memspi.com/
[6]P. Krulevitch, A. P. Lee, P. B. Ramsey, J. C. Trevino, J. Hamilton, and M. A. Northrup, 1996, “Thin Film Shape Memory Alloy Microactuators,” Microelectromech. Sys., Vol. 5, No. 4, pp. 270-282.
[7]F. Arai, D. Andou, Y. Nonoda, and T. Fukuda, 1998, “Integrated Microendeffector for Micromanipulation,” IEEE/ASME Trans. Mechatronics, 3, pp. 17-23.
[8]M. Kohl, B. Krevet and E. Just, 2002, “SMA micro-gripper system,” Sensors and Actuators, A 97-98, pp. 646-652.
[9]張景堯, 2002, 形狀記憶合金驅動高分子微夾持系統之發展, 國立成功大學機械工程學系, 碩士論文.
[10]R. Keoschkerjan and H. Wurmus, 2004, “A novel microgripper with parallel movement of gripper arms,” 8th International Conference on New Actuators, pp. 321-324.
[11]R. Salim, H. Wurmus, A. Harnisch and D. Hulsenverg, 1997, “Microgrippers created in microstructurable glass,” Microsystem Technologies, Vol. 4, pp.32-34.
[12]P. Bernardoni, A. Riwan, H. Tsitsiris, O. Millet, L. Buchaillot, S. Regnier and P. Bidaud, 2003, “Micro-gripper driven by SDAs coupled to an amplification mechanism,” The 12th International conference on Solid States Sensors, Actuators and Microsystems, Boston, pp. 280-283.
[13]P. Bernardoni, A. Riwan, H. Tsitsiris, O. Millet, L. Buchaillot, S. Regnier and P. Bidaud, 2004, “Electrostatic actuated micro-gripper using an amplification mechanism,” Sensors and Actuators, A 114, pp. 371-378.
[14]M. Mita, H. Kawara, H. Toshiyoshi, M. Ataka and H. Fujita, 2003, “An electrostatic 2-Dimensional microgripper for nano structure,” The 12th International conference on Solid States Sensors, Actuators and Microsystems, pp. 272-275.
[15]N. T. Nguyen, S. S. Ho and C. L. N. Low, 2004, “A polymeric microgripperwith integrated thermal actuators,” Journal of Micromech. Microeng., Vol. 14, pp. 969-974.
[16]邱建清, 2004, 應用拓樸最佳化撓性機構於微夾爪之設計與製作, 國立高雄應用科技大學機械與精密工程研究所, 碩士論文.
[17]N. Chronis and L. P. Lee, 2004, “Polymer MEMS-Based Microgripper for single cell manipulation,” 17th IEEE, pp. 17-20.
[18]N. Chronis and L. P. Lee, 2005, “Electrothermally Activated SU-8 Microgripper for Single Cell Manipulation in Solution,” Journal of Microelectromechanical systems, Vol. 14, No. 4, pp. 857-863.
[19]G. B. Madhab, C. S. Kumar and P. K. Mishra, 2005, “Design of a Bio-inspired Piezoelectric Compliant Miniature Gripper,” International Conference on Smart Materials Structures and Systems, ISSS 2005, pp. 17-24.
[20]J. G. Smits, 1992, “Design Considerations of a Piezoelectric On Silicon Microrobot,” Sensors and Actuators A: Physical, A35, pp. 129-138.
[21]L. Lin and S. H. Lin, 1998, “Vertically Driven Microactuators by Electrothermal Buckling Effects,” Sensors and Actuators, A 71, pp. 35-39.
[22]M. Bergamasco, P. Dario, F. Salsedo, 1990, “Shape Memory Alloy Microactuators,” Sensors and Actuators A: Physical, A21-23, pp. 253-257.
[23]T. Shoji, S. Isao, 2002, “Selective drive of electrostatic actuators using remote inductive powering,” Sensors and Actuators A: Physica, Vol. 95, Issue 2-3, January 1, pp. 269-273.
[24]H. Guckel, J. Klein, T. Christenson, K. Skrobis, M. Laudon, E. G. Lovell, 1992, “Thermo-magnetic metal flexure actuators,” Solid-State Sensor and Actuators Workshop, 5th Technical Digest, IEEE, pp. 73-75.
[25]S. Butefisch, V. Seidemann and S. Buttgenbach, 2002, “Novel micro-pneumatic actuator for MEMS,” Sensors and Actuators, Vol. 97-98, pp. 638-645.
[26]李季旻, 2005, 應用多目標與桁架網路分佈法於撓性拓樸最佳化設計與製造, 國立高雄應用科技大學機械與精密工程研究所, 碩士論文.
[27]L. L. Howell, D. L. Wilcox, S. Lyon, 2004, “The Stacked Amplified Thermomechanical In-plane Microactuator (StATIM),” ASME International Mechanical Engineering Congress and Exposition, IMECE04-59617, pp. 1-5.
[28]Riethmuller W., Benecke W., 1988, “Thermally excited silicon microactuators,” IEEE Transactions on Electron Dev., Vol. 35. No. 6, pp.758-763.
[29]J. W. Judy, T. Tamagawa, and D. L. Polla, 1990, “Surface Micromachined Linear Thermal Microactuator,” Electron Devices Meeting. Technical Digest., International, pp.629-632.
[30]Guckel, H., Klein, J., Christenson, T., Skrobis, K., Laudon, M., Lovell, E.G. , 1992, “Thermo-Magnetic Metal Flexure Actuators,” Solid-State Sensor andActuator Workshop, 5th Technical Digest, IEEE, pp. 73 –75.
[31]江欣怡, 2003, 電熱式微致動器之結構設計與熱傳分析, 國立清華大學動力機械工程學系, 碩士論文.
[32]吳青臺, 2004, 多自由度電熱式微致動器的研究, 國立交通大學機械工程系所, 碩士論文.
[33]John H. Comtois, M. Adrian Michlicek, Carole Craig Barron,1997, “Characterization of electrothermal actuators and arrays fabricated in a four-level, planarized surface-micromachined polycrystalline silicon process”, Solid State Sensors and Actuators, TRANSDUCERS’97 Chicago., International Conference on, Vol. 2, pp.769-772.
[34]H. Shames, F. A. Cozzarelli, 1997, Elastic and Inelastic Stress Analysis, Revised Printing, Taylor & Francis.
[35]邱重榮, 2002, 電熱式微致動器疲勞實驗與分析, 國立成功大學工程科學系,碩士論文.
[36]詹至剛, 2002, 半導體電熱式微致動器之分析與設計, 大同大學機械工程研究所,碩士論文.
[37]F. P. Incropera, David P. Dewitt, 2002, Fundamentals of Heat and Mass Transfer, Fifth Edition, John Wiley & Sons.
[38]J. P. Holman, 1986, Heat Transfer, International Student Edition, McGraw-Hill Book Co., Singapore.
[39]R. B. Hetnarski, 1986, Thermal Stresses I, North-Holland Publishing Co., USA.
[40]Y. B. Gianchandani and K. Najafi, 1996, “Bent-Beam Strain Sensors,” IEEE J. of Microelectromechanical Symtem, Vol.5, No1, pp.52-58
[41]L. Que, J.-S. Park and Y. B. Gianchandani, 1999, “Bent-Beam Electro-Thermal Actuators for High Force Applications,” MEMS '99. Twelfth IEEE International Conference on Micro Electro Mechanical Systems , pp.31-36
[42]ANSYS Menu, “The Element Library” Ch4.- Table of Contents Element Reference 6.1 2002.
[43]姜冠禎, 2000, 拓樸最佳化設計系統整合之研究, 國立中正大學機械工程研究所,碩士論文.
[44]A. Saxena and G. K. Ananthasuresh, 2000, “On an optimal property of compliant topologies,” Struct Multidisc Optim 19, pp. 36-49.
[45]Dong Xu, G. K. Ananthasuresh, 2003, “Freeform Skeletal Shape Optimization of Compliant Mechanisms,” Journal of Mechanical Design, vol. 125, pp. 253-261.
[46]Sigmund, O., 1997, “On the Design of Compliant Mechanisms using Topology Optimization,” Mechanics of Structures and Machines, Vol. 25, No. 4, pp. 495-526.
[47]M. I. Frecker, G.. K. Ananthasuresh, S. Nishiwaka, N. Kikuchi, S. Kota, 1997, “Topological Synthesis of Compliant Mechanisms Using Multi-Criteria Optimization,” ASME Transactions, Journal of Mechanical Design, Vol. 119, No. 2, pp. 238 -245.
[48]徐業良, 1995, 工程最佳化設計, 宏明圖書, 台北.
[49]J. S. Arora, 1989, Introduction to Optimum Design, McGraw-Hill, Singapore.
[50]莊達人, 2003, VLSI製造技術, 高立圖書有限公司, 台北.
[51]SU-8 Photoresists Formulations 50-100 Datasheets, MicroChem.
[52]行政院國家科學委員會精密儀器發展中心, 2003, 微機電系統技術與應用, 全華科技圖書公司, 台北.
[53]葉翳民, 2003, 類LIGA技術脈衝電鑄鎳鐵合金微模仁研製及特性研究, 國立交通大學材料科學與工程系, 博士論文.
[54]黃皇齊, 2004, 應用UV-LIGA於導光板模仁之製作研究, 國立高雄應用科技大學模具系, 碩士論文.
[55]鍾震桂, 佘坤霖, 2006,“導電SU8 厚光阻的製程技術,”第四屆精密機械與製造技術研討會, B44, 頁1-4, 屏東, 5月26日.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top