跳到主要內容

臺灣博碩士論文加值系統

(44.192.38.248) 您好!臺灣時間:2022/11/27 07:55
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:陳建志
研究生(外文):Chien-Jyh Chen
論文名稱:具有完整性設計之不確定撓性機械系統的強健-最佳主動式振動控制
論文名稱(外文):Robust-Optimal Active Vibration Control for the Uncertain Flexible Mechanical Systems Possessing Integrity via Genetic Algorithm
指導教授:陳信宏陳信宏引用關係
指導教授(外文):Shinn-Horng Chen
學位類別:碩士
校院名稱:國立高雄應用科技大學
系所名稱:機械與精密工程研究所
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2006
畢業學年度:94
語文別:中文
論文頁數:48
中文關鍵詞:撓性機械系統參數不確定量控制器參數擾動強健穩定性混合田口基因演算法致動器失效
外文關鍵詞:Flexible mechanical systemsactive vibration controlparameter uncertaintiescontroller parameter perturbationstability rob
相關次數:
  • 被引用被引用:5
  • 點閱點閱:397
  • 評分評分:
  • 下載下載:213
  • 收藏至我的研究室書目清單書目收藏:1
本文旨在提出一種強健-最佳控制法則來處理撓性機械系統在控制和殘餘模態均存在著模態截斷、線性時變參數不確定量、致動器失效、回授增益擾動以及估測增益擾動下的主動式振動控制(或主動式振動抑制)問題。首先提出一強健穩定條件來解決具有線性時變參數不確定性的撓性機械系統,在部分致動器失效的情況下仍可維持漸近穩定。具有此種特性的系統稱之為具有完整性,且此為MIMO系統的固有特性。基於強健穩定性的限制和 性能的最小化,將使用混合田口基因演算法來求解不確定撓性機械系統之最佳狀態回授控制器及觀測器的設計問題。最後以撓性簡支樑及撓性轉子系統作為設計範例,示範混合田口基因法在強健-最佳主動式振動控制器的效能評估。模擬結果顯示,使用田口基因法將可得到令人滿意的結果。
In this paper, a robust-optimal control approach is proposed to treat the vibration control (or active vibration suppression) problem of flexible mechanical systems under mode truncation, linear time varying parameter uncertainties in both the controlled and residual parts, feedback gain perturbations, estimator gain perturbations and partial actuator failures. A sufficient condition is proposed to ensure that the flexible mechanical systems with time-varying structured parameter uncertainties are asymptotically stable against partial actuator failures. Systems which have such a property are said to be possess integrity, and this is an inherent property of MIMO systems. Based on the robust stability constraint and the minimization of a defined performance, a hybrid Taguchi-genetic algorithm (HTGA) is applied to solve the optimal state feedback controller and observer design problem of uncertain flexible mechanical systems. A design example of a flexible rotor system is given to demonstrate the applicability of the proposed approach. It’s shown that the proposed approach can obtain satisfactory results.
中文摘要......................................................................................................................Ⅰ
Abstract........................................................................................................................Ⅱ
致謝..............................................................................................................................Ⅲ
目錄..............................................................................................................................Ⅳ
圖目錄..........................................................................................................................Ⅵ

第一章 緒論..............................................................................................................1
1.1 研究動機.....................................................................................................1
1.2 文獻回顧.....................................................................................................3
1.3 論文架構.....................................................................................................4

第二章 撓性機械系統之強健穩定性………………………………......................5
2.1主動式振動控制..........................................................................................5
2.2撓性機械系統描述…………......................................................................6
2.3 具完整性之強健穩定性分析.....................................................................8

第三章 混合式田口基因演算法................................................................................14
3.1田口法與基因演算法的應用....................................................................14
3.2 HTGA之應用............................................................................................16
   3.2.1實驗參數的設定…….....................................................................20
  3.2.2編碼與初始族群.............................................................................20
3.2.3適應函數設定.................................................................................21
3.2.4選擇.................................................................................................22
  3.2.5交配操作.........................................................................................23
  3.2.6田口法………………………………….........................................24
  3.2.7突變操作.........................................................................................24
  3.2.8終止條件.........................................................................................25

第四章 撓性機械系統之強健—最佳主動式振動控制……....................................26
   4.1前言............................................................................................................26
   4.2撓性簡支樑之主動式振動控制…............................................................26
4.3撓性轉子系統主動式振動控制…………................................................30

第五章 結論................................................................................................................42
   5.1總結............................................................................................................42
   5.2未來展望....................................................................................................43
參考文獻........................................................................................................44
[1] Chou, J. H., S. H. Chen and C. H. Chao, 1998, “Robust stabilization of flexible mechanical systems under noise uncertainties and time-varying parameter perturbations”, Journal of Vibration and Control, Vol.4, pp.167-185.
[2] Chen, S. H., J. H. Chou and L. A. Zheng, 2000, “Robust Kalman-filter-based frequency-shaping optimal active vibration control of uncertain flexible mechanical systems,” The Chinese Journal of Mechanics, Vol.16, pp.349-359.
[3] Balas, M. J., 1978a, “Active control of flexible systems”, Journal of Optimization Theory and Applications, Vol.25, pp.415-436.
[4] Balas, M. J., 1978b, “Feedback control of flexible systems”, IEEE Trans.on Automatic Control, Vol.23, pp.673-679.
[5] Balas, M. J., 1982, “Toward a more practical control theory for distributed parameter systems”, Control and Dynamic Systems, Vol.18, Academic Press, New York, pp.361-421.
[6] Balas, M. J., R. Quan, R. Davidson and B. Das, 1988, “Low-order control of large aerospace structures using residual mode filters”, Recent Advanced in Control of Nonlinear and Distributed Parameter Systems, Robust Control and Aerospace Applications, American Society of Mechanical Engineers, New York, pp.157-165.
[7] Lin, C. L., F. B. Hsiao and B. S. Chen, 1990, “Stabilization of large structural systems under mode truncation, parameter perturbations and actuator saturations”, International Journal of Systems Science, Vol.21, pp.1423-1440.
[8] Peres, P. L. D., E. R. De Pieri and H. Abou-Kandil, 1992, “Robust output feedback control applied to flexible structures”, Proc. IFAC/IFORS/IMACS Symposium on Large Scale Systems: Theory and Applications, Beijing, China, pp.476-479.
[9] Burrows, C. R., P. S. Keogh and R. Tasaltin, 1993, “Closed-loop vibration control of flexible rotors -- an experimental study,” Proc. of the Institution of Mech. Engineers, Part C: Mechanical Engineering Science, Vol.207, pp.1-17.
[10] Khot, N. S. and S. A. Heise, 1994, “Consideration of plant uncertainties in the optimum structural-control design”, AIAA Journal, Vol.32, pp.610-615.
[11] Seto, K. and S. Mitsuta, 1994, “A new method for making a reduced-order model of flexible structures using unobservability and uncontrollability and its application in vibration control”, JSME International Journal, Series C, Vol.37, pp.444-449.
[12] Seto, K., Y. Toba and Y. Matsumoto, 1995, “Reduced order modeling and vibration control methods for flexible structures arranged parallel”, Proc. of American Control Conference, Seattle, Washington, pp.2344-2348.
[13] Khot, N. S. and H. Oz, 1997, “Structural-control optimization with H-2 and H-infinity norm bounds”, Optimal Control Applications and methods, Vol.18, pp.297-311.
[14] Chen, S. H., 2003, “Robust Kalman-filter-based frequency-shaping optimal active vibration control of uncertain flexible mechanical systems with nonlinear actuators”, Journal of Vibration and Control, Vol.9, pp.623-644.
[15] Huang, J. C. and F. R. Chang, 1998, “A design method for control systems possessing integrity and robust stability”, Journal of the Chinese Institute of Engineers, Vol.21, pp.139-147.
[16] Zheng, L. A., Chen, S. H., and Chou, J. H., 2002, "Robust frequency-shaping optimal active vibration control of uncertain flexible mechanical systems with persistent excitation," The Chinese Journal of Mechanics-Series A, Vol. 18, No. 4, pp. 163-171.
[17] Holland, J. H., 1975, Adaptation in Natural and Artificial Systems, Ann Arbor, MI:The University of Michigan Press.
[18] Holland, J. H. , July, 1922, “Genetic Algorithms”, Sci. Am., pp.66-72.
[19] Goldberg D. E., 1989, Genetic Algorithms in Search, Optimization and Machine Learning, Reading, MA:Addison-Wesley.
[20] Jong, D., 1975, “Analysis of the behavior of a class of a genetic adaptive system”, Ph. D. Dissertation, The University of Michigan, Ann Arbor.
[21] 尤英和,劉東官,2004 ,“基於遺傳演算法之連桿軌跡最佳化設計-以六連桿步行馬為例”,碩士論文,國立高雄第一科技大學機械與自動化工程系。
[22] 吳宗益,劉東官,2002 ,“應用於基因演算法及田口實驗法於模具生產排程系統之研究”,碩士論文,國立高雄第一科技大學機械工程研究所。
[23] 邱元泰,季美秀,2002,“遺傳演算法在排課問題之應用”,碩士論文,國立中山大學數學研究所。
[24] 劉東官,何敏蓉,2003,”利用田口實驗及多目標最佳化基因遺傳演算法於控制器參數設計”,第二十屆機械工程研討會論文集,國立高雄第一科技大學機械與自動化工程所
[25] Taguchi, G., and Chowdhury, S., 2000, Robust Engineering, McGraw-Hill, New York
[26] 陳信宏,2004,田口品質工程上課講義,高雄應用科技大學機械與精密工程所。
[27] 蘇朝墩,2002,品質工程,中華民國品質學會,台北市。
[28] 陳詠升,2005,”多自由度振動系統在時變不確定量及未知持續性干擾下之主動式控制研究”,碩士論文,國立高雄應用科技大學機械與精密工程所。
[29] Rao, S. S., T. S. Pan and V. B. Venkayya, 1990, “Modeling,Control,and Design of
flexible Structures:A Survey,” Applied Mechanical Review, Vol.43, No.5, pp99-117.
[30] 陳柏璋,2004,”以函數近似為基礎之適應控制研究及其於主動式懸吊系統之應用”,碩士論文,國立台灣科技大學機械工程所。
[31] Chen, S. H., 1996, “Robust LQG Control for Mechanical Systems,” Dissertation for Ph. D., Institute of Mechanical Engineering, National Sun Yat-Sen University, Kaohsiung, Taiwan, ROC.
[32] Cao, D. Q. and Shu, Z. Z., 1994, “Robust stability bounds for multi-degree-of-freedom linear systems with structured perturbations”, Dynamics and Stability of Systems, Vol.9, pp.79-87.
[33] Goodal, R. M. and Ausyin, S. A., 1994, “Modeling, placing and controlling active elements in structural engineering design”, Control Engineering Practice, Vol.2, pp.743-753.
[34] Chou, J. H., 1994, “Robust stability bounds on structured time-varying independent perturbations for linear state-space models”, JSME International Journal, Series C, Vol.37, pp.733-738.
[35] Tsai, J. T., T. K. Liu and J. H. Chou, 2004, “Hybrid Taguchi-genetic algorithm for global numerical optimization”, IEEE Trans. on Evolutionary Computation, Vol.8, pp.365-377.
[36] Gen, M. and R. Cheng, 1997, Genetic Algorithms and Engineering Design, John Wiley and Sons, New York.
[37] Chou, J. H., Chen, S. H. and Lee, F. Z., 1998, “Grey-fuzzy control for a active suspension design”, International Journal of Vehicle Design, Vol.19, pp.65-77.
[38] Chen, S. H., Chou, J. H. and Li, J. J., 2002, “Optimal grey-fuzzy controller design for a constant tuning force system”, International Journal of Machine Tools & Manufacture, Vol.42, pp.343-355.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top