|
[1] Yasuoka, K., M. Matsumoto, and Y. Kataoka, “Evaporation and condensation at a liquid surface. I. Argon,” J. Chem. Phys., Vol. 101 , pp. 7904, 1994. [2] A. Rytko¨nen, S. Valkealahti, and M. Manninen, “Melting and evaporation of argon clusters, ” J. Chem. Phys., Vol. 106, pp. 1888, 1997. [3] Moseler, M., and Uzi Landman, 2000, “Formation, Stability, and Breakup of Nanojets,” Science, Vol. 289, pp.1165-1169. [4] Eggers, J., “Dynamics of nanojets,” Phys. Rev. Lett., Vol. 89 , pp. 084502., 2002. [5] Te-Hua Fang, Win-Jin Changb, and Shi-Cheng Liao,“Effects of temperature and aperture size on nanojet ejection process by molecular dynamics simulation,” Microelectronics Journal, Vol. 35 , pp. 687–691, 2004. [6] Choi , Y. S., S. J. Kim, and M. U. Kim, "Molecular dynamics of unstable motions and capillary instability in liquid nanojets," Phys. Rev. E, Vol. 73, pp. 0163091-0163096, 2006. [7] Levitt, M., Hirshberg, M., Sharon, R., Laidig, K.E., and Daggett, V. Calibration and Testing of a Water Model for Simulation of the Molecular Dynamics of Proteins and Nucleic Acids in Solution. J. Phys. Chem., B Vol. 25, pp. 5051-5061, 1997. [8] Baskes, M. I., 1987, “Application of the Embedded-Atom Method to Covalent Materials: A Semiempirical Potential for Silicon,” Physical Review Letters, Vol. 59, pp. 2666-2669. [9] Baskes, M. I., J. S. Nelson, and A. F. Wright, 1989, “Semiempirical Modified Embedded-Atom Potentials for Silicon and Germanium,” Physical Review B, Vol. 40, pp. 6085-6100. [10]Baskes, M. I., 1992, “Modified Embedded-Atom Potentials for Cubic Materials and Impurities,” Physical Review B, Vol. 46, pp.2727-2742. [11] Dou, Y., L. V. Zhigilei, N. Winograd, and B. J. Garrison, Explosive Boiling of Water Films Adjacent to Heated Surfaces: A Microscopic Description, J. Phys. Chem. A, Vol. 105, pp. 2748-2755, 2001. [12] Dou, Y., N. Winograd, B. J. Garrison, and L. V. Zhigilei, “Substrate-assisted laser-initiated ejection of proteins embedded in water films, ” J. Phys. Chem. B, Vol. 107, pp. 2362-2365, 2003. [13] Gallo, P., M. Rapinesi, and M. Rovere, “Confined water in the low hydration regime, ” Journal of Chemistry Physics, Vol. 117, pp. 369, 2002. [14] Levitt, M., M. Hirshberg, R. Sharon, K.E. Laidig, and V. Daggett, “Calibration and Testing of a Water Model for Simulation of the Molecular Dynamics of Proteins and Nucleic Acids in Solution,” Journal of Physical Chemistry B, Vol. 101 , pp. 5051, 1997. [15] Haile, J., “Molecular Dynamics Simulation: Elementary Methods, ” John Wiley & Sons, NY, 1992. [16] Allen, M.P., and D.J. Tildesley, “Computer Simulation of Liquid, ” Clarendon Press, Oxford, 1991. [17] Nosé, S.,“A unified formulation of the constant temperature molecular dynamics methods”, J.Chem. Phy., Vol. 81, pp.511-519, 1984. [18] William G. Hoover, “Canonical dynamics: Equilibrium phase-space distributions”, Physical Review A. 31, pp.1695-1697, 1985. [19] Rapaport, D. C., The Art of Molecular Dynamics Simulation, Cambridge University Press, London, 1997 [20] Goodfellow, J. M. et al, Molecular dynamics, CRC Press, Boston, 1990 [21] Frenkel, D. & B. Smit, Understanding Molecular Simulation, Academic Press, San Diego, 1996. [22] Heermann, D. W., Computer Simulation Method, Springer-Verlag, Berlin, 1990 [23] Soper, A. K.; Phillips, M. G. , “A New determination of the structure of water at 25°C, ” Chem. Phys., Vol. 107, pp. 47, 1986. [24] Lefebvre, A. H., “Gas Turbine Combustion,” Chapter 10, Hemisphere Publishing Corporation, New York, 1983. [25] http://www.cs.sandia.gov/~sjplimp/lammps.html
|