跳到主要內容

臺灣博碩士論文加值系統

(44.192.115.114) 您好!臺灣時間:2023/09/29 22:49
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:董世欽
研究生(外文):Dung Shi-Chin
論文名稱:水平圓管外層流膜狀凝結熱傳之熱力學第二定律分析
論文名稱(外文):Second Law Analysis of Laminar Film Condensation on a Horizontal Tube
指導教授:楊勝安楊勝安引用關係
指導教授(外文):Yang Sheng-An
學位類別:碩士
校院名稱:國立高雄應用科技大學
系所名稱:模具工程系碩士班
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2006
畢業學年度:94
語文別:中文
論文頁數:50
中文關鍵詞:圓管膜狀凝結熱力學第二定律
外文關鍵詞:entropytubetubefilm condensationsecond law
相關次數:
  • 被引用被引用:0
  • 點閱點閱:950
  • 評分評分:
  • 下載下載:121
  • 收藏至我的研究室書目清單書目收藏:1
本論文研究係採用熵增最佳化(EGM)方法,宗旨在分析慢速流動之飽和蒸汽在水平圓管外的熵值增加率。本文獲得用於說明圓管外膜狀凝結之特定不可逆率的作用之熵增率的公式,針對水平圓管在不同的邊界條件下:﹙1﹚表面定溫之穩態情況, ﹙2﹚表面溫度可變化之穩態情況,作層流膜狀凝結熱傳熵值增加率分析。
本研究結合Adrian Bejan學者所提出在對流熱傳下熵增原理與最佳化方式與指導教授楊勝安教授之膜狀凝結熱傳研究方法,針對不同的Brinkman參數、Rayleigh參數以及Jakob參數效應等,採用數值分析方法並搭配相關研究參數,分別分析等溫圓管之局部與平均之無因次化熱傳熵增率與局部不可逆率比。最後再作可變壁溫之水平圓管外層流膜狀凝結熱傳之熵增定律分析。結果顯示,局部熵增率隨Brinkman參數增加而變大。當Rayleigh參數遞增時,無因次熱傳係數增強,然而也造成局部熵增率增加。相對不可逆率分佈比值顯示不可逆率主要係由熱傳效應所主控;重力帶動之薄膜流動摩擦只有在接近半圓周處才具與熱傳相當之影響力。
最後本論文將與前人所作之熵增定律分析結果作比較,分析其優劣,提供3C大廠對於未來3C產品效能與節能兩方面取捨的設計參考。
This study uses the entropy generation minimization (EGM) method to optimize a saturated vapor flowing slowly onto and condensed on an isothermal horizontal tube. We derive an expression for entropy generation, which accounts for the resultant action of specified irreversibilities of film-wise condensation outside a tube, subjected to different kinds of boundary conditions which include (1) steady isothermal wall temperature, (2) variable (non-isothermal /isothermal) wall temperature.
This thesis combines the EGM technique proposed by Adrian Bejan for a laminar flow with convection heat transfer and the heat transfer approach for laminar film condensation by my adviser, Dr. Yang, to investigate both local and mean dimensionless entropy generation rate of laminar film condensation on a horizontal tube subject with both isothermal wall and variable wall temperature respectively. The present paper uses numerical approach and studies the effects of various working parameters, including Brinkman, Rayleigh, and Jakob numbers on the entropy generation rate. Besides, the irreversibilities ratio of finite temperature difference heat transfer and film flow friction are also studied.
The result shows that local entropy generation rate increases with Brinkman group parameters. As Rayleigh group parameters increase, dimensionless heat transfer coefficient is enhanced, but entropy generation number is augmented too. The result of irreversibility distribution ratio indicates that heat transfer irreversibility dominates over film flow friction irreversibility except around the middle way of streamwise length for the cases .
Finally, the present result is also compared with that different model. Besides, it will offer the electronic enterprise a reference data in the future.
目錄
頁數
中文摘要---------------------------------------------------------------------------------------I
英文摘要--------------------------------------------------------------------------------------II
誌謝------------------------------------------------------------------------------------------- IV
目錄---------------------------------------------------------------------------------------------V
圖目錄---------------------------------------------------------------------------------------VII
符號說明-----------------------------------------------------------------------------------VIII
第一章 前言----------------------------------------------------------------------------------1

1–1熱力學第二定律----------------------------------------------------------------1
1–2凝結物理模式--------------------------------------------------------------------2
1–3文獻回顧--------------------------------------------------------------------------3
1–4研究動機--------------------------------------------------------------------------6
1–5論文結構--------------------------------------------------------------------------6

第二章 熵增定律理論分析--------------------------------------------------------------12

2–1對流熱傳之局部熵增變化--------------------------------------------------12
2–2流動摩擦不可逆率與熱傳不可逆率-------------------------------------14

第三章 均勻壁溫下水平圓管外層流膜狀凝結熱傳之熵增定律分析-------16

3–1物理模型與理論分析---------------------------------------------------------16
3–2結果與討論---------------------------------------------------------------------23
3-2-1 均勻壁溫下水平圓管外層流膜狀凝結熱傳之局部熵增變化
----------------------------------------------------------------------------23
3-2-2 均勻壁溫下水平圓管外層流膜狀凝結熱傳之平均熵增變化
----------------------------------------------------------------------------25

第四章 非均勻壁溫下水平圓管外層流膜狀凝結熱傳之熵增定律分析----31

4–1物理模型與理論分析---------------------------------------------------------31
4–2結果與討論---------------------------------------------------------------------38
非均勻壁溫下水平圓管外層流凝結熱傳之熵增變化
(A=1, )----------------------------------------------------38

第五章 結論---------------------------------------------------------------------------------44

5–1綜合討論------------------------------------------------------------------------44
5–2未來研究方向與建議---------------------------------------------------------45

參考文獻------------------------------------------------------------------------------------- 46
簡歷--------------------------------------------------------------------------------------------50
1. Nusselt, W., 1916,“Die oberflachen kondensation des wasserdampers,” Zeitsehriftdesvereines eutsher ingenieure, Vol.60, pp.541–546, 569-575.
2. Bromley, L. A., 1952,“Effect of heat capacity of condensate,” Int. Engng. Chem. Vol.44, pp.2966-2969.
3. Rohsenow, W. M., 1956,“Heat transfer and temperature distribution in laminar film condensation,” Trans ASME Vol.78, pp.1645-1648.
4. Sparrow, E. M. and Gregg, J. L., 1959,"Laminar condensation heat transfer on a horizontal cylinder," J. Heat Transfer, pp.291-296 .
5. Koh, J. C. Y., Sparrow, E. M. and Hartnett, J. P., 1961"The two phase boundary layer in laminar film condensation," Int. J. Heat Mass Transfer pp.69-82 .
6. Koh, J. C. Y., 1961,"On integral treatment of two phase boundary layer in film condensation," J. Heat Transfer Vol.83, pp.359-362.
7. Chen, M. M., 1961,"An analytical study of laminar film condensation: part 1 –flat plates," J Heat Transfer Vol.83, pp.8-54.
8. Chen, M. M., 1961,"An analytical study of laminar film condensation: part 2- single and multiple horizontal tubes," J Heat Transfers, pp.55-60.
9. Churchill, S. W., 1986,"Laminar film condensation," Int. J. Heat Mass Transfer Vol.29, pp.1219-1226.
10. Taghavi, K., 1988,"Effect of surface curvature on laminar film condensation," J Heat Transfer, pp.268-270.
11. Krupiczka, R., 1985,"Effect of surface tension on laminar film condensation on a horizontal cylinder," Chem. Engng. Process. 19, pp.199-203.
12. Stepanek, J. Heyberger, A.. and Vesely, V., 1969,"Warme-ubergang am WagrechtenRohrbei Kondensation gesattiger und Uberhitzer Dampfe," Int. J. Heat Mass Vol.12, pp.137~146.
13. Fujii, T.; Uehare, H. and Oda, K., 1972,"Filmwise condensation on a surface with uniform heat flux and body force convection," Heat Transfer Japanese Res. 4, pp.76~83.
14. Shklover, G. G; Semyonov, V. P. and Usachyev, A. M., 1989,"Condensation on a horizontal tube with a spatially non-uniform temperature distribution,” Heat Transfer-Soviet Research 21, No1, pp.29-33.
15. Lee, W. C.; Rahbar, S. and Rose, J. W., 1984,"Film condensation of refrigerant 113 and ethanediol on a horizontal tube- effect of vapor velocity," J. Heat Transfer Vol.106, pp.524-530.
16. Memory, S. B. and Rose, J. W., 1991,"Free convection laminar film condensation on a horizontal tube with variable wall temperature," Int. J. Heat Mass Transfer Vol.34, pp.2775-2778 .
17. Dhir, V. K., and Lienhard, J. H., 1971,"Laminar film condensation on plane and axisymmetric bodies in non-uniform gravity," J. Heat Transfer 93C. pp.97~100.
18. Dhir, V. K., and Lienhard, J. H., 1974,"Laminar film condensation on submerged isothermal bodies," J. Heat Transfer, pp.555-557.
19. Souza-Santos, Marcio L. de. 1990,"Explicit forms for the calculation of heat and momentum transfer coefficients for vapour condensation on surfaces of-various forms," Canadian J. of Chem. Engng. Vol.68, pp.29-37.
20. Semenov, V. P.; Shkiover, G. G.; Usachev, A. M. and Semenova, T. P.,
1990,"Enhancement of heat transfer in condensation of steam on a horizontal non-circular pipe," Heat Transfer-Soviet Research Vol.22, no.l, pp.15-20.
21. Bejan, A., 2000, “Entropy Generation Minimization: The Method and Its Applications.”, Proceedings of the ASME-ZSITS International Thermal Science Seminar, Bled, Slovenia, pp.7-17.
22. Nag, P. K., and Mukherjee, P., 1987,“Thermodynamic Optimization of Convective Heat Transfer Though a Duct with Constant Wall Temperature.” Int. J. Heat Mass Transfer, Vol.30, pp. 401-405.
23. Sahin, A. Z., 1998, “Second Law Analysis of Laminar Viscous Flow through a Duct Subjected to Constant Wall Temperature.” J. Heat Transfer, Vol.120, pp. 76-83.
24. Saouli, S., and Aiboud-Saouli, S., 2004,“Second Law Analysis of Laminar Falling Liquid Film along an Inclined Heated Plate.” Int. Comm. Heat Mass Transfer, Vol.31, pp. 879-886.
25. Adeyinka, O. B., and Naterer, G. F., 2004,“Optimization Correlation for Entropy Production and Energy Availability in Film Condensation.” Int. Comm. Heat Mass Transfer, Vol.31, pp. 513-524.
26. Lin, W. W., and Lee, D. J., 2001,“Second-Law Analysis of Vapor Condensation of FC-22 in Film Flows Within Horizontal Tubes.” J. Chin. Inst. Chem. Engng. Vol.32, pp. 89-94
27. Dung, S. C., Tzeng, S. H., and Yang, S. A., 2006,"Entropy Generation of Free Convection Film Condensation from Downward Flowing Vapors onto a Cylinder or Sphere." Journal of Mechanics
28. Dung, S. C., and Yang, S. A., 2006,''Second Law Based Optimization of Free Condensation Film-Wise Condensation on Horizontal Tube '', Int. Comm. in Heat and Mass Transfer.
29. Dung, S. C., Tzeng, S. H., and Yang, S. A., 2006,"Entropy Generation of Free Convection Film Condensation from Downward Flowing Vapors onto a Cylinder or Sphere." Journal of Mechanics.
30. Tzeng, S. H., and Yang, S. A., 2006,"Second Law Analysis and Optimization for Film-wise Condensation from Downward Flowing Vapors onto a Sphere", Heat and Mass Transfer, accepted.
31. Li, G. C., and Yang, S. A., 2006,"Thermodynamic Analysis of Free Convection Film Condensation on an Elliptical Cylinder", J. of the Chinese Institute Engineers.
32. Li, G. C., and Yang, S. A., 2006,"Entropy Generation Minimization of Free Convection Film Condensation on an Elliptical Cylinder", Submit to Int. J. Thermal Sciences.
33. Yang, Sheng-An and Chen, C.K.,1993,”Role of Surface Tension and Ellipticity in Laminar Film Condensation on Horizontal Elliptical Tube,”Int. J. Heat & Mass Transfer,Vol.36, No.12, pp.3135-3141.
34.Yang, Sheng-An and Chen, C.K., 1993,”Effects of Surface Tension and Nonisothermal Wall Temperature Variation upon Filmwise Condensation on Vertical Ellipsoids/sphere,” Proc. Royal Society Lord,A: Vol.442, pp.301-312.
35.Yang, Sheng-An and Chen, Cha'O-Kuang, 1993,”Transient film condensation on a horizontal elliptical tube,”J. Phys-D,Vol.26,pp.793-797.
36.Yang, S.A. and Chen, C.K., 1993,”Filmwise condensation on Non- isothermal Horizontal Elliptical Tube with Surface tension,” AIAA J. of Thermophysics & Heat Transfer Vol.7,No.4,pp.729-732.
37.Yang, S.A. and Chen C.K.,1994,”Laminar Film Condensation on a Horizontal Elliptical Tube with Variable Wall Temperature,” ASME J. Heat Transfer Vol.116, pp.1046-1049.
38.Yang, Sheng-An and Chen C.K.,1993,”Laminar Film Condensation on a Horizontal Elliptical Tube with Uniform Surface Heat Flux and Suction at the Porous Wall,” J. CSME,Vol.14, No.1,pp.93-100.
39. Bejan, A., 1996,Entropy Generation Minimization, chapter 4, CRC Press, Boca Raton, FL.
40. Fowler, A. J., and Bejan, A., 1994,“Correlation of optimal sizes of bodies with external forced convection heat transfer”, Int. Comm. Heat and Mass Transfer Vol.21, pp.17-27
41.Yang, S. A. and Hsu, C. H., 1997,”Free and Forced Convection Film Condensation form a Horizontal Elliptical Tube with a Vertical Plate and Horizontal Tube as Special Cases,” Int. J. Heat and Fluid Flow, Vol.18, pp.567-574.
42.Yang, S. A., and Hsu, C. H., 1999, “Mixed-Convection Film Condensation on a Horizontal Elliptical Tube with Variable Wall Temperature,” J. of the CSME, Vol.20, No.4, pp.373-384.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊