(3.238.7.202) 您好!臺灣時間:2021/03/01 21:28
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:劉如紘
研究生(外文):Ju-Hung Liu
論文名稱:可導電氧化鋯上濺鍍鈦基氮化物及類鑽碳薄膜之研究
論文名稱(外文):The Study of Titanium-Based Nitride and Diamond-Like Carbon Thin Film Deposited on Electrically Conductive Zirconia
指導教授:邱錫榮
指導教授(外文):Shiyung Chiou
學位類別:碩士
校院名稱:國立高雄應用科技大學
系所名稱:模具工程系碩士班
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2006
畢業學年度:94
語文別:中文
論文頁數:66
中文關鍵詞:類鑽碳膜氮化鈦膜氮化鋁鈦膜可導電氧化鋯直流磁控濺鍍
外文關鍵詞:DLCTiNTiAlNelectrically conductive zirconiaDC magnetron reactive sputtering
相關次數:
  • 被引用被引用:0
  • 點閱點閱:744
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:49
  • 收藏至我的研究室書目清單書目收藏:1
超硬刀、模具材料大多是瓷金(cermet)或陶瓷(ceramic)所構成,兩者硬度約在1300~1500HV,各刀、模具上經過表面改質(surface modification)即成了進一步提升刀、模具材效率的重要技術,其中類鑽碳膜、氮化鈦膜及氮化鋁鈦薄膜有著非常優異的機械性質,所以為了因應耐磨、耐熱等各種加工環境,本實驗將在可導電氧化鋯基材上鍍覆更硬的單層膜、抗沾黏的單層膜或設計多元膜、多層膜以觀察其微結構、機械性質及高溫性質。
本研究藉由直流(DC)磁控濺鍍法於可導電氧化鋯上濺鍍氮化鈦薄膜、氮化鋁鈦薄膜及類鑽碳薄膜,在控制濺鍍參數,如工作壓力、氣體流量、輸出功率、基板溫度及濺鍍時間,以得到1~2μm厚氮化物膜及含鈦類鑽碳薄膜,隨後再對薄膜做持溫(600oC)處理以觀察其受熱後之性質及結構的變化。除了做硬度量測外,另外以拉曼光譜儀(Raman)、X-光繞射儀(X-ray Diffraction, XRD)、熱重分析(Thermogravity Analysis, TGA)、掃描式電子顯微鏡(Scanning Electron Microscope, SEM)觀察硬膜之相結構(phases)及薄膜生長型態(film morphology)以及薄膜受熱性質。
實驗結果顯示,可導電氧化鋯基材的硬度值約在1300~1500HV,經反應性磁控濺鍍氮化鈦薄膜後提升至2000~2100HV,增加率達60%,氮化鋁鈦鍍覆於可導電氧化鋯基材強度也提升至2000HV左右◦而濺鍍含鈦類鑽碳薄膜後硬度提升(2100~ 2300HV)的同時其摩擦係數的降低也將助於工(模)具元件耐摩性之增加 ◦X-光繞射分析指出當Al元素加入TiN薄膜後,其結晶格子參數將減低,掃描電鏡也清楚顯示氮化物膜的柱狀組織。而於600oC耐熱試驗後之微組織觀察發現氮化鈦薄膜與可導電氧化鋯基材界面間會有剝離的現象以及硬度降低發生,而氮化鋁鈦及含碳類鑽碳薄膜則較沒有這種現象的發生,於TGA試驗也顯示三者在氮氣及氧氣環境中,呈現增加之趨勢,且以TiN增加量最多。
Cermets and ceramics have been widely applied in tool and may have higher performance through the surface modification such as depositing nitrides, carbides and diamond materials. The zirconia with electric conductivity may be used for the tool materials and can obtain higher hardness, more abrasive resistance, higher anti-sticking properties and better high temperature properties after surface modification in addition to electric-discharge machining properties.
This study is to deposite the nitride(TiN, TiAlN) and diamond-like carbon films on the electrically conductive zirconia by DC magnetron reactive sputtering. The 1-2μm thickness of hard films may be obtained by controlling the process variables such as working pressure, inlet gas ratio, input energy and deposition time. The micro-hardnesses may be measured by Vickers hardness tester. X-ray diffraction (XRD) and scanning electron microscope(SEM) are used to evaluate the phases and morphologies of hard films. The post thermal treatments and Thermogravity Analysis(TGA) are also performed for hard films to examine the high temperature properties.
The results indicate the TiN and TiAlN hard films have hardnesses of 2000-2100HV with 60% higher than electrically conductive zirconia and DLC has hardness of 2100-2300HV and lower friction coefficient. The XRD analyzes the decreasing lattice constant of TiN with aluminum elements and the SEM observes sound boundary between films and substrates and columnar structures of the nitride films. The TiN films after thermal treatment at 600oC are found to have small decohesion or micro- cracks between films and substrate and the decreasing hardness, theses results don’t exist for TiAlN and DLC films. The TGA curves reveal the increasing weights of TiN, TiAlN and DLC and TiN has the largest increment.
目錄
摘要....................................................I
ABSTRACT................................................II
誌謝 ................................................III
目錄 ................................................IV
表目錄 ................................................V
圖目錄 ................................................VI
第1章 緒論 ........................................1
1.1 前言 ........................................1
第2章 薄膜生成及濺鍍之基礎理論及文獻回顧 ................4
2.1 電漿生成理論 .................................4
2.2 電漿濺鍍法(Sputtering Deposition) .................4
2.3 薄膜沉積原理 .................................6
2.4 鍍層微結構之模型 .................................8
2.5 氧化鋯基本結構及性能 .........................9
2.6 氮化鈦鍍膜性質 .................................10
2.7 氮化鋁鈦鍍膜性質 .................................11
2.8 碳的結構及型態 .................................11
第3章 實驗方法及設備 .................................28
3.1 實驗流程 .........................................28
3.2 鍍膜 .........................................28
3.3 性能測試 .........................................31
第4章 結果與討論 .................................41
4.1 可導電氧化鋯硬膜濺鍍之設計 .........................41
4.2 維氏硬度量測分析 .................................42
4.3 X光繞射分析 .................................42
4.4 拉曼光譜分析 .................................43
4.5 鍍層掃描電鏡(SEM)分析 .........................44
4.6 耐熱性能分析 .................................45
第5章 結論 .........................................63
參考文獻 .................................................64
1.A. Grill, B. Patel, B. S. Meyerson, J. Mater. Res., 5 (1990) 2531.
2.A. Erdemir, M. Switala, R. Wei, P. Wilbur, Surf. Coat. Technol., 50 (1991) 17.
3.E. I. Melets, A. Erdemir, G. R. Fenske, Surf. Coat. Technol., 73 (1995) 39.
4.R. Buhl, H. K. Pulker, E. Moll, Thin Solid Films., 80 (1981) 265.
5.W. D. Munz, K. Hofmann, K. Hartig, Thin Solid Films., 96 (1982) 79.
6.R. Makabe, S.Nakajima, O. Tabata, M. Aoki, Thin Solid Films., 137 (1986) L49.
7.Y. Tanaka, M. Bhmer, T. Leyendecker, J. Vac. Sci. Technol. A4 (1986) 2695.
8.羅吉宗,薄膜科技與應用,全華科技圖書股份有限公司。
9.白木 靖寬/吉田 貞史,薄膜工程學,全華科技圖書股份有限公司。
10.Donald L. Smith, “Thin-Film Deposition: Principles and Practice”.
11.E. Robert, Phy. Metal. Princ., 1996 pp.15-4.
12.J. Pelleg, L. Z. Zevin and S. Lungo, Thin Solid Films., 197 (1991) pp.117.
13.G. Knuyt, C. Quaeyhaegens, C. J. D'Haenand L. M. Stals, Surf.Coat.Technol., 74/75 (1995) pp.604.
14.L .Hultman and J. E. Sundgren, J. Vac. Sci.Technol., A 7(3) (1989) pp.1187.
15.L .Hultman , J .E. Sundgren and J. E. Greene, J. Appl.Phys., 66 (1989) pp.536.
16.John A. Thornton, J. Vac. Sci. Techol., vol.11 no.4 (1974) pp.666-670.
17.A. H. Heuer and M. Rühle, Advances In Ceramic., vol.12 (1984) pp.2.
18.H. A.Wriedt, J. L. Murray, Vol.8(4-6) (1987) pp.378-388.
19.H. G. Scott., Journal of Materials Science ., vol.10 (1975) pp.1527.
20.K. Tsukuma, Journal of the American Ceramic Society Bull., vol.65 (1986) pp.1386.
21.Hideyuki Kuwahara, Naoko Mazaki, Makoto Takahashi, Tomotaro Watanabe, Xu Yang, Materials Science Engineering., A319-321, Tatsuhiko Aizawa, (2001) pp.687.
22.CRC Materials Science and Engineering Handbook, p281
23.T. Yamada, M. Shimada, and M. Koizumi,“Fabrication and Characterization of Tiatnium Nitride by High Pressure Hot Pressing”1980,Journal of the American Ceramic Society Bull, vol.59, p611
24.Bry Coat, Advanced Wear Resistant Coatings.“Physical properties of Titanium nitride coating”, AS9100A:2001, http://www. brycoat. com/tin/ physprop.html
25.王光國,”氮化鈦對釔安定化氧化鋯性能與組織之影響”,國立高雄應用科技大學模具系,碩士論文。
26.L. E. Toth, “Transition Carbides and Nitrides”, Academic press, New York, 1971.
27.H.A.Wriedt,J.L.Murray,”The N-Ti(Nitrogen-Titaniun) System”,Bulletin of Alloy Phase Diagrams”,Vol.8(4-6),1987,pp.378-388
28.H. Jiang, K Tao, and H. Li, Thin Solid Film., 258 (1995) pp.51.
29.J. F. Shackelf, “CRC Materials Science and Engineering Handbook”, CRC press,1994.
30.高正雄,“電漿化學”,復漢出版社。
31.O. Knotek and T. Leyendecker, J. Solid stat Chem., 70 (1987) pp.318-322.
32.W. D. Munz., J. Vac. Sci. Technol.,A4 (1986) pp.2717-2725.
33.J. Robertson, Materials Science and Engineering., R 37 (2002) pp.130.
34.I. M. Buckly-Golder and A. T. Collins, Diam. Relat. Mater., Vol.1 (1992) pp.1083.
35.宋健民,鑽石合成,全華科技圖書股份有限公司。
36.王國光,”在碳化鎢刀具上沉積DLC類鑽碳膜對機械性質及材料使用壽命之影響研究”,南台科技大學,碩士論文。
37.J. A. N. Goncalves, G. M. Sandonato, K. Iha, Diam. Relat. Mater., Vol.11 (2002) pp.1578-1583.
38.Willian D. Callister, JR, Materials Science and Engineering and Introduction 5th ed, John wiley & Sons, 92-102 (1999) pp.361-386.
39.A. A. Voevodin, M. A. Capano, S. J. P. Laube, M. S. Donley, J. S. Zabinski , Thin Solid Films., 298 (1997) pp.107-115.
40.A. A. Voevodin, C. Rebholz, J. M. Schneider, P. Stevenson,A. Matthews., Vol. 73 (1995) pp.185-197.
41.D. J. Green, R. H. J. Hannink, and M. V. Swain, 1989, CRC Press. Inc., pp.6.
42.Xianqing, Xie; Di, Zhang; Jinshui, Liu, Materials and Design., vol:22 lssue:3 (2001) pp.157-162.
43.Zhang, Sam; Sun, Deen; Fu, Yongqing; Du, Hejun; Zhang, Qing, Diamond and Related Materials., Vol:13 lssue:10 (2004) pp.1777-1784.
44.R. Yu, L. L. He, H. Q. Ye, Acta Materialia., Vol. 51, Issue: 9, May 23, 2003, pp. 2477-2484
45.陳耀明,”TiN鍍膜微結構與性質之研究”,國立清華大學,博士論文。
46.郭原隆,”磁控濺鍍氮化鋁薄膜之顯微結構及生物相容性研究”,國立高雄應用科技大學,碩士論文。
47.K. Chakrabarti, J. J. Jeong, S. K. Hwang, Y. C. Yoo, C. M. Lee, Thin Solid Film., 406 (2002) pp.159-163.
48.謝健,”電漿化學氣相沉積鈦-鋁-碳-氮系統奈米結構鍍層”,國立成功大學,博士論文。
49.B. D. Cullity, “Elements of X-ray Diffraction”, ADDISON-WESLEY, pp.356.
50.C. S. Lee, X. Z. Liao, R. J. Zhang, S. T. Lee, Y. W. Lam, Diam. Relat. Mater., Vol.6 (1997) pp.521.
51.Chung Wan Kim, Kwang Ho Kim, Thin Solid Films., Vol.307 (1997) pp.113-119.
52.U.Wahlstrom,L.Hultman,J.E.Sundgren,F.Adibi,I.Petrov,J.Egreen,Thin Solid Films.,Vol.235 (1993) pp.62.
53.R.Wuhrer,W.Y.Yeung,M.R.Philips,G.McCredie,Thin Solid Films., Vol.290/291 ,pp.339-342.
54.L.Hultman , J.E.Sundgren and J.E.Greene, J. Appl.Phys. 66 (1989) pp.536.
55.Q. G. Zhou, X. D. Bai, X. Y. Xue, X. W. Chen, J. Xu, D. R. Wang, Surface & Coatings Technology, Vol.191 (2005) pp.212-215.
56.A. Mitsuo, S. Uchida, N. Nihira, M. Iwaki, Surface and Coatings Technology, Vol. 103-104 (1998) pp.98-103.
57.Da-Yung Wang, Chi-Lung Chang, Wei-Yu Ho, Surface and Coatings Technology, Vol.120-121 (1999) pp.138-144.
58.邱錫榮,”鈦基氮化物薄膜濺鍍於鋼上介面機械性質,氧化性質及微組織分析”,國立中山大學,博士論文。
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔