(34.239.176.198) 您好!臺灣時間:2021/04/23 20:24
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:林建瑋
研究生(外文):Jian-Wei Lin
論文名稱:利用有限元素法耦合複層網格法數值分析非規則邊界熱傳問題
論文名稱(外文):Numerical Analysis of Heat Conduction Problems for Irregular Boundary Using Finite Element Method Couple with Multilevel Techniques
指導教授:邱武耀邱武耀引用關係
指導教授(外文):Wu-Yao Chiou
學位類別:碩士
校院名稱:國立高雄應用科技大學
系所名稱:模具工程系碩士班
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2006
畢業學年度:94
語文別:中文
論文頁數:63
中文關鍵詞:數值分析有限元素法複層網格法
外文關鍵詞:numerical analysisfinite element methodmultilevel method
相關次數:
  • 被引用被引用:0
  • 點閱點閱:171
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:1
本文推導出一種精確而有效的離散化非規則邊界有限元素法數值解,可用來解非規則邊界之熱傳遞問題。傳統的有限元素法可解任意幾何的邊界問題,但無法配合使用複層網格法計算求解。因此隨問題複雜性提高,而影響計算效率與儲存空間。利用三角元素導出的離散化計算方式,有別於傳統有限元素法組合成整體矩陣。數值問題經由複層網格法配合高斯-希德爾疊代法計算下,可改善計算效率與儲存空間的問題。
同時歸納並推導出所有三角元素組合的計算式,用以分別計算不同幾何邊界情況。在準確度方面,由於邊界外型是由三角元素所組成,因此可獲得與傳統有限元素法相同的結果。為說明數值的正確性,本研究以四分之一圓之熱傳問題為例,從一系列的計算例中,印證了數值的正確性與優良的計算效率。
An accurate effective finite element algorithm is developed for solving the heat conduction problem with an irregular boundary domain. The traditional finite element method can solve the arbitrary geometric problem, but it is unable to couple with multigrid computing technology. Therefore, as problem complexity increased,it will influence on computational efficiency and data memory space. A discrete computational models are derived by triangular element which are different from the global matrix composed of traditional finite element method. The numerical problem solved by the computational form is coupled with Gauss-Seidel iteration and multigrid computing technology to improve the computational efficiency and data memory space problem.
In this thesis, several of computational models composed of triangular element are derived for computing the differenct geometry of boundary conditions. Because of the computational forms of boundary is composed by the triangular element, the accuracy of numerical solutions can be obtained as same as traditional finite element method. In order to describe the exactness of the numerical computation, a series of computational cases of heat conduction with a quarter of circle region, have been confirmed with the exactness of numerical solution and the fine computational efficiency.
中文摘要
英文摘要
誌謝
目錄
表目錄
圖目錄
符號說明
第一章
緒論
1.1研究動機與背景
1.2文獻回顧
1.3研究目的
1.4論文架構
第二章
數值分析理論
2.1簡介
2.2離散化有限元素推導
2.3複層網格法
2.3.1修正法則
2.3.2全近似法則
2.3.3全複層網格法則
2.4複層網格法應用於非規則邊界問題之能量傳遞
2.5時間階梯法
第三章
複層網格法應用到非規則邊界溫度固定熱傳問題之公式推導
3.1簡介
3.2非規則網格分析推導過程
3.3離散化計算式
第四章
非規則邊界溫度固定熱傳問題數值案例分析
4.1簡介
4.2卜易生問題
4.3暫態問題
第五章
複層網格法應用到非規則邊界對流熱傳問題之公式推導
5.1簡介
5.2非規則網格分析推導過程
5.3離散化計算式
第六章非規則邊界對流熱傳問題數值案例分析
6.1簡介
6.2穩態熱對流問題
第七章
結論與建議
7.1結果與討論
7.2未來研究方向與建議
參考文獻
1.E. L. Wilson and R. E. Nickell, Application of the Finite Element Methods to Heat Conduction Analysis, Nucl. Eng. Des., vol. 4,pp. 276-286, 1966.
2.H.T. Chen and J.Y. Lin,Numerical Soltion of Two-Dimensional Nonlinear Hyperbolic Heat Conduction Problems, Numer. Heat Transfer Part B, vol. 25, pp.287-307, 1994.
3.Z. Gvirtzman and Z. Garfunkel, Numerical Soltion of One-Dimensional Heat-Conduction Equation Using a Spreadsheet,Computers & Geosiences, vol. 22, No. 10, pp.1147-1158, 1996.
4.Y. Ochiai and T. Sekiya,Steady Heat Conduction Analysis by Improved Multiple-Reciprocity Boundary Element Method,Engineering Analysis with Boundary Elements, vol. 18, No. 10, pp.111-117, 1997.
5.P. Duda and J. Taler,Numerical Method for the Solution of Non-Linear Two-Dimensional Inverse Heat Conduction Problem Using Unstructured Meshes, Int. J. Meth. Engng,Vol.48, pp.881-899,2000.
6.R. T. Lee and W. Y. Chiou, Finite-Element Analysis of Heat Conduction Problems with Irregular Region Boundary Using Multilevel Technique, Numer. Heat Transfer Part B, vol. 40, pp.179-198, 2001.
7.A. Brandt, Multi-level Adaptive Solution to Boundary-Value Problem, Math. Comp., vol. 31,pp. 333-390, 1977.
8.R. E. Phillips and F. W. Schmidt, Multigrid Techniques for the Solution of the Passive Scalar Advection-Diffusion Equation, Numer. Heat Transfer, vol. 8, pp. 25-43, 1985.
9.A. A. Lubrecht,The Numerical Solution of the Elastohydrodynamically Lubricated Line and Ponit Contact Problem Using Multigrid Techniques, Ph.D Thesis, Twente University, The Netherlands, 1987.
10.A. S. Dawood and P. J. Burns, Steady Three-Dimensional Convective Heat Transfer in A Porous Box Via Multigrid, Numer. Heat Transfer Part A, vol. 22, pp.167-198, 1992.
11.R. T. Lee and W. Y. Chiou, Finite-Element Analysis of Phase-Change Problems Using Multilevel Technique, Numer. Heat Transfer Part B, vol. 27, pp.277-290, 1995.
12.J. Vicrcndccls, B. Mcrci, and E. Dick, A Multigrid Method for Natural Convective Heat Transfer with Large Temperature Differences, J.Comput. Appl. Math.,vol. 168,pp. 509-517, 2004.
13.M. S. Mesquita and M. J. S. de Lemos, Optimal Multigrid Solutions of Two-Dimensional Convection-Conduction Problems, Appl. Math. Comput., vol. 152,pp. 725-742, 2004.
14.S. Vincent and J.P. Caltagirone,Numerical Solving of Incompressible Navier-Stokes Equations Using an Original Local Multigrid Refinement Method,Computational Fluid Mechanics, Vol.328, pp.73-80,2000.
15.R. T. Lee , C. H. Hsu and W. F. Kuo, Multilevel Solution for Thermal Elastohydrodynamic Lubrication of Rolling/Sliding Circular Contacts, Tribology International, Vol. 28,No. 8,pp. 541-552,1995.
16.C. H. Hsu and R. T. Lee, Advanced Multilevel Solution for Elastohydrodynamic Lubrication Circular Contacts Problem, Wear,Vol. 177,pp. 117-127,1994.
17.洪文錡,複式網格法應用於二維滾動彈塑性有限元素分析,國立中山大學機械工程研究所,碩士論文,1993。
18.黃文良,複式網格法應用於冷間軋延研究,國立中山大學機械工程研究所,碩士論文,1995。
19.楊文賢,多重網格法在不規則二維流場模擬上的應用,國立清華大學化工工程研究所,碩士論文,1994。
20.李長和,多重網格法於不規則邊界流場之應用,國立中興大學土木工工程研究所,碩士論文,1996。
21.邱武耀,複層有限元素法解析相變化問題,國立中山大學機械工程研究所,博士論文,1995。
22.S. F. McCormick,Multilevel Adaptive in Induction Heating of Large Steel Slabs,Int. J. Numer. Methods Eng., vol. 30,pp. 779-801,1990.
23.I. Uzun and M. Unsal,A Numerical Study of Laminar Heat Convection Ducts of Irregular Cross-Sections,Int. Comm. Heat and Mass Transfer, vol. 24, pp.835-848, 1997.
24.C.N. Chen,The Development of Irregular Elements for Differential Quadrature Element Method Steady-State Heat Conduction Analysis, Computer Methods in Applied Mechanics and Engineering,Vol. 170,pp. 1-14,1999.
25.M.G. Blyth andC. Pozrikidis,Heat Conduction Across Irregular and Fractal-Like Surfaces,Int. J. Heat and Mass Transfer, vol. 46, pp.1329-1339, 2003.
26.P. Talukdar, Radiation Heat Transfer for Irregular Geometries With the Collapsed Dimension Method, Int. J. Thermal Sciences, vol. 45, pp.103-109, 2006.
27.A. Sanchez and T.F.Smith, Surface Radiation Exchange for Two-Dimensional Rectangular Enclosures Using the Discrete-Ordinates Method,J. Heat Tramsfer, vol. 114,pp 465-472, 1992.
28.M. Sakami and A. Charette, Application of A Modified Discrete Ordinates Method to Two-Dimensional Enclosures of Irregular Geometry,J. Quant. Spectrosc. Radiat. Transfer,vol. 64,pp. 275-298, 2000.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔