跳到主要內容

臺灣博碩士論文加值系統

(44.220.251.236) 您好!臺灣時間:2024/10/09 07:39
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:陳俊宏
研究生(外文):Jyun-Hong Chen
論文名稱:運用質點顯像測速於散熱器鰭片內流場特性研究
論文名稱(外文):Fluid-Dynamic Diagnostics on interior flow patterns of Heat Sink Using PIV system
指導教授:艾和昌艾和昌引用關係
指導教授(外文):Herchang Ay
學位類別:碩士
校院名稱:國立高雄應用科技大學
系所名稱:模具工程系碩士班
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2006
畢業學年度:94
語文別:中文
論文頁數:89
中文關鍵詞:鰭片散熱器內部流場質點顯像測速流量分佈強制對流非接觸式量測
外文關鍵詞:heat sinkPIVnon-invasiveinterior flowforce convectionflow volumes
相關次數:
  • 被引用被引用:1
  • 點閱點閱:467
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:1
隨著時代進步,許多產品均朝向電子化發展,也使得現今有關於電子產業的散熱技術格外顯的重要,在電子散熱的方式中,最方便且最具經濟性的散熱方式即為使用鰭片散熱器,本研究主要使用質點顯像測速系統,藉非接觸式方式量測板鰭式散熱器以及鍵鰭式散熱器之鰭片內部流道各截面中心流場結構以及流場分佈情形,實驗時以不同厚度的散熱風扇作吹入與抽出兩種流動方式,並依據實際電腦之散熱風扇工作情形,改變風扇轉速之測試條件作為探討。
以板鰭式而言,量測結果發現此裝置之強制對流下散熱方式,會因受到風扇馬達遮斷流路之影響,造成鰭片內流場結構在各截面中都呈現不同情形。比較吹入及抽出的兩種風扇作動方式,前者產生渦流之截面數量會較後者少且渦流結構較不完整;實驗中採用不同尺寸之散熱風扇,因風扇為葉片旋轉方式作動產生氣流,而在出風口兩側會有不同的風量情形,在產生渦流的區域會因流量增加而使結構更加明顯。
此外,吹入式可造成鰭片內流場的流動方式加速向散熱器外側流動,且不易受到風扇馬達遮蔽所影響,以抽出式之散熱方式時會隨著散熱鰭片的截面由外往內觀測可量測出不同截斷面受到風扇馬達軸心之邊界影響,產生的渦流結構使空氣流體不易排出。在配合於相同實驗條件下操作之紅外線熱像儀量測,亦能驗證對板鰭式散熱器而言,由上方吹入冷氣流的風扇作動方式較抽出有較佳的散熱效果。而鍵鰭式散熱器有別於板鰭式之幾何造型,在相同之截面下量測內流場時,發生渦流使流體滯留的現象已不明顯。經由質點顯像測速裝置可量測出各截面進出口之速度分佈,再配合各截面的進出口幾何尺寸,能夠估算出各斷面所流進的流量,了解到因風扇的幾何造型對於進入鰭片散熱器的流量有極大之影響。
As technology advances, many products move towards electrification. Heat transfer is very important in the electronic industry. The finned heat sink is the most convenient and economic way of cooling. This research uses the Particle Image Velocimetry System-a non-invasive method that measures the interior flow patterns of the plate-finned and pin-finned heat sink. Different fan sizes were used along with two different flow types; for example, blow-out and draw-in. By changing the rotation speed of the fan, we can see the impact using a computer cooling fan.

The test results using the plate-finned heat sink showed that it was influenced by the axis of the fan. Different interior flow patterns appeared in each section. Comparing the draw-in and blow-out airflow of a fan, the vortex produced is less when the air is drawn in than when the air is blown out. Because both sides of the outlet have different air volumes, using different cooling fan sizes produces more obvious results.

The draw-in and blow-out air flows of the fan produces different results. The study found a large vortex near the center of the base for when using the blow-out function. To improve the cooling effects, the cold air draw-in the plate-fin heat sink is the best choice. This conclusion is also confirmed by infrared thermography. Because the geometry and size of the pin-finned heat sink is different from the plate-finned heat sink, the vortex was not obvious when measured under the same conditions. The PIV system was used to produce a diagram of the import and export velocity contours. This information was used to estimate the flow volumes for each section by comparing to the inlet size. The geometry of the fan has a large influence on the entering air flow volumes.
目 次
中文摘要............................................................................................................................i
英文摘要...........................................................................................................................ii
致謝..................................................................................................................................iv
目錄...................................................................................................................................v
表目錄.............................................................................................................................vii
圖目錄............................................................................................................................viii
符號說明...........................................................................................................................x
第一章 緒論.................................................................................................1
1.1 前言............................................................................................................................1
1.2 研究目的....................................................................................................................1
1.3文獻回顧.....................................................................................................................2
第二章 質點顯像測速系統之原理.............................................................6
2.1 影像分析之計算........................................................................................................6
2.2 實驗前置作業............................................................................................................7
2.2.1 四分之一法則................................................................................................8
2.2.2 動力速度範圍................................................................................................8
2.2.3 動力空間範圍..............................................................................................10
第三章 實驗儀器設備.............................................................................................12
3.1實驗儀器....................................................................................................................12
3.2質點顯像測速系統(PIV System).............................................................................12
3.3油霧質點產生器........................................................................................................14
3.4測試件製作................................................................................................................15
3.4.1 板鰭式散熱器(測試件A)...........................................................................15
3.4.2 鍵鰭式散熱器(測試件B)..........................................................................16
3.4.3 流場觀測之測試箱體...................................................................................16
3.5 風扇轉速之選用......................................................................................................17
3.6 風扇轉速測定..........................................................................................................17

第四章 結果與討論..................................................................................................26
4.1 測試件A(板鰭式散熱器)實驗結果........................................................................26
4.1.1 以case1風扇吹入........................................................................................26
4.1.2以case1風扇抽出.........................................................................................28
4.2 以Case2風扇觀察不同截面之流場變化...............................................................30
4.2.1以風扇抽出散熱方式下觀察各截面流場....................................................30
4.2.2以風扇吹入散熱方式下觀察各截面流場....................................................31
4.2.3 EE截面在不同風扇轉速之流場變化..........................................................31
1.以風扇抽出方式觀察不同轉速各截面流場.................................................31
2.以風扇吹入方式觀察不同轉速各截面流場.................................................32
4.3 不同風扇作動下之比較..........................................................................................32
4.3.1 以抽出式(Blow-Out)比較Case1和Case2風扇.........................................32
4.3.2 以吹入式(Draw-In)比較Case1和Case2風扇..........................................33
4.4 散熱鰭片各截面流量之估算..................................................................................33
4.4.1 各截面受風扇馬達軸心遮蔽對流量之影響以抽出式(Blow-Out)...........33
4.4.2 各截面受風扇馬達軸心遮蔽對流量之影響以吹入式(Draw-In)..............34
4.4.3 風扇轉速對於流量之影響..........................................................................34
第五章 結論與未來工作............................................................................80
5.1結論............................................................................................................................80
5.1.1板鰭式散熱器................................................................................................80
5.2 未來工作..................................................................................................................81
參考文獻......................................................................................................83
附錄一..........................................................................................................87
個人簡歷......................................................................................................89
參考文獻

1.Nakayama, W., “Thermal Management of Electronic Equipment,” in advances in Thermal Modeling of Electronic Components and System, Bar-Cohen, A., Eds., Hemisphere, Washington, DC, Vol.1, pp. 1-78, 1988.

2.Chu, R. C., “Heat Transfer on Electronic System,” Proceeding of the 8th International Heat Transfer Conference, San Francisco,CA, pp. 36-42, 1986.

3.Yu, E., and Joshi, Y., “Heat Transfer Enhancement from Enclosed Discrete Components Using Pin-Fin Heat Sinks,” International Journal of Heat and Mass Transfer, Vol. 45, No. 25, pp. 4957-4966, 2002.

4.Ronan Grimes and Mark Davies,The effect of fan operating point and location on temperature distribution in electronic systems., 2002 Inter Society Conferenceon Thermal Phenomena., 677-684, 2002.

5.曾明溪,『風扇數值模擬與實驗量測』,國立清華大學工程與系統科學所碩士論文,1999.

6.Shirayama, S. and Kuwahara, K., Flow visualization technique for computational fluid dynamics, in Flow Visualization V, Reznicek, R., Ed., Hemisphere, Washington, D.C., 297-304, 1990.

7.Suter, P., Revesz, Z., Tanner, P. A., and Gottschalk, G., Reconstruction of velocity vector in a three-dimensional flow field from photographed tracer trajectories, in Flow Visualization V, Reznicek, R., Ed., Hemisphere, Washington, D. C., 272- 278, 1990.

8.Son, S.Y, Kihm, K.D., Ham,J.-C, PIV Flow for Heat Transfer Characterization in Two-Pass Square Cannel With Smooth and 90° Ribbed Walls, International Journal of Heat Transfer, Vol. 45, 4809-4822, 2002.

9.Ekkad, S., Han, J. C., Detailed Heat Transfer Distributions in Two-Pass Square Channels With Rib Turbulators, Int. J. Hest Mass Transfer, Vol. 40, 525-2537, 1997.

10.Luiz M. Lourenco and Anjaneyulu Krothapalli., Stereoscopic and time resolved PIV measurements in high-speed flow(invited)., 24th AIAA Aerodynamic Measurement Technology and Ground Testing Conference June 2004.

11.Yasunori Kunisaki, Toshio Kobayashi, Tetsuo Saga, Nobuyuki Taniguchi,Shigeki Segawa, Kouji Kajitani, Takao Fukunaga, Tomohiro Tasaka ,A study on internal flow field of automotive torque converter-three dimensional flow analysis around a stator cascade of automotive torque converter by using PIV and CT techniques., JSAE Review 22 (2001) 559–564.

12.Andrea Stella, Giulio Guj, Jürgen Kompenhans, Hugues Richard and Markus Raffel, Three-components particle image velocimetry measurements in premixed flames, Aerospace Science and Technology, v 5, n 5, July, 2001, p 357-364

13.Willert, C.; Raffel, M.; Kompenhans, J., Recent applications of particle image velocimetry in large-scale industrial wind tunnels, ICIASF Record, International Congress on Instrumentation in Aerospace Simulation Facilities, 1997, p 258-266

14.Willert, Christian; Raffel, Markus; Kompenhans, Juergen; Stasicki, Boleslaw; Kaehler, Christian, Recent applications of particle image velocimetry in aerodynamic research, Flow Measurement and Instrumentation, v 7, n 3-4, Sep-Dec, 1996, p 247-256.

15.Willert, C., Raffel, M., Kompenhans, J., Stasicki, b. and Kaehler, C., Recent Application of Particle Image Velocimetry in Aerodynamic Research, Flow Meas. Instrum. Vol.7, No.3/4, 247-256, 1996.

16.Bryanston-Cross, P. J., Judge, T. R., Quan, C., Pugh, G. and Corby N., The application of digital particle image velocimetry (DPIV) to transonic flow, Prog. Aerospace Sci., Vol.31, 273-290, 1995.

17.Raffel, M. et al., Measurement of Vortical Structures on a Helicopter Rotor Model in a Wind Tunnel by LDV and PIV, Proc. 8th Int. Symp. Appl. of Laser Tech. to Fluid Mech., 14-3, 1996.

18.Raffel, M. and Kompenhans, J., PIV Measurements of Unsteady Transonic Flow Fields Above a NACA 0012 Airfoil, Proc,5th Int. Conf. Laser Anemometry, 527, 1993.

19.Raffel, M. et al., Experimental Aspects of PIV Measurements of Transonic Flow Fields at a Trailing Edge Model of a Turbine Blade, Proc. 8th Int. Symp. Appl. of Laser Tech. to Fluid Mech, 28-1, 1996.

20.Yamane, T. et al., Shear Distribution Measurement in the Impeller-Housing Gap of a Centrifugal Blood Pump with Flow Visualization Technique, Proc. Int. Conf. On New Frontier in Biomechanical Engineering, Tokyo, 117, 1997.

21.Kawahashi, M. et al., Experimental Analysis of Flow in a Multiblade Fan by Using PIV Techique, 5th Asian Int. Conf. on Fluid Machinery, p.787, 1997.

22.Tisserant, D. et al., Rotor Blade to Blade Measurements Using Particle Image Velocimetry, ASME Journal of Turbomachinery, 119-2, 176, 1997.

23.Prasad, S.K., Asrian, R.J., Landreth, C.C. and Offutt, P.W., "Effect of Resolution on the Speed and Accuracy of Particle Image Velocimetry Interrogation, " Exp. In Fluids. Vol. 13, pp. 105-116, 1992.

24.Keane, R.D. and Adrian, R.J., "Theory of Cross-Correlation of PIV Image, " Applied Scientific Research, Vol. 19, pp. 191-215, 1992.

25.Fincham, S.M. and Spedding, G.R., "Low Cost High Resolution DPIV for Measurement of Turbulent Flow, " Exp. In Fluids. Vol. 23. pp. 449-462, 1997.
26.Westerweel, J., "Efficient Detection of Spurious Vectors in Particle Image Velocimetry Data, " Exp. In Fluids, Vol. 16, pp. 236-247, 1994.

27.Raffel, M. and Kompenhans, J., "Error Analysis for PIV Recording Utilizing Image Shifting, " Proc. 7th International Symposium on Application of Laser Techniques to Fluid Mechanics, Lisbon, July, p. 35.5, 1994.

28.Westerweel, J., Dabiri, D. and Gharib, M., " The Effect of a Discrete Window Offset on the Accuracy of Cross-Correlation Analysis of Digital PIV Recordings, " Exp. In Fluids. Vol. 23, pp. 20-28, 1997.

29.Keane, R.D. and Adrian, R.J., " Optimization of Particle Image Velocimeters, " Part 1 : Multiple Pulsed System, Meas. Sci. Technol. Vol. 1, pp. 1202-1215, 1990.

30.Westerweel, J., "Fundamentals of Digital Particle Image Velocimetry, " Meas. Sci. Technol. Vol. 8, pp. 1379-1392, 1997.

31.Keane, R.D. and Adrian, R.J., " Optimization of Particle Image Velocimeters, " Part 2 : Multiple Pulsed System, Meas. Sci. Technol, Vol. 2, pp. 963-974, 1991.

32.Adrian, R.J., "Dynamic Range of Velocity and Spatial Resolution of Particle Image Velocimetry, " Meas. Sci. Technol, Vol. 8, pp. 1393-1398, 1997.

33.艾和昌,陳秉義,『運用數位質點顯像測速於多排交叉流電子構裝散熱系統之流場特性研究』,南台科技大學碩士論文,2002年7月.

34.艾和昌,嚴坤政,『小型風力發電系統設置與葉片氣動力分析』,南台科技大學碩士論文,2004年7月.

35.艾和昌,謝乃軻,『運用數位質點顯像測速於三種單層噴煤槍在不同速度比下流場特性研究』,南台科技大學碩士論文,2004年7月

36.艾和昌,陳智霖,『運用DPIV與HPIV於高效率氣冷式空氣冷凝器之流場特性研究』,南台科技大學碩士論文,2005年7月

37.J Chen and J Katz, Elimination of peak-locking error in PIV analysis using the correlation mapping method, Meas. Sci. Technol. 16 1605-1618.
電子全文 電子全文(網際網路公開日期:20260731)
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top