跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.82) 您好!臺灣時間:2025/01/17 06:22
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:吳昆寰
研究生(外文):Kun-Huan Wu
論文名稱:鎳鈦合金於口腔環境之臨床研究
論文名稱(外文):In Vivo Study on NiTi Alloy in Oral Environment
指導教授:邱錫榮歐耿良
指導教授(外文):Shi-Yung ChiouKeng-Liang Ou
學位類別:碩士
校院名稱:國立高雄應用科技大學
系所名稱:模具工程系碩士班
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2007
畢業學年度:95
語文別:英文
中文關鍵詞: 鎳鈦合金 腐蝕 氫化物 口腔環境
外文關鍵詞:NiTi alloysCorrosionTitanium hydrideOral environment
相關次數:
  • 被引用被引用:0
  • 點閱點閱:607
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:1
摘要
近來由於鎳鈦合金具有特殊的形狀記憶效應,極佳的延展性,並具有擬彈性特性及良好的疲勞壽命,在工業界的數量有持續成長之趨勢,在醫療方面最具代表的應用就是牙齒矯正線。此外,鎳鈦合金具有良好的抗腐蝕能力和生物相容性。然而,鎳鈦超彈性合金也會因在口腔環境中受到腐蝕而使其超彈性的特性變差的議題也常被拿來討論。本篇研究的目的在於討論鎳鈦超彈性合金的機械性質,會因口腔內吸收氫的含量不同而引起微結構變化。
另外,經過氫作用是否能使鎳鈦合金產生表面結構變化將會更詳盡地討論與研究。為了研究氫在鎳鈦合金微結構及機械性質,鎳鈦合金的電子反應和表面性質藉由掃描式電子顯微鏡,低掠角X光繞射儀,熱示差分析儀和高解析電子能譜儀來觀察。其微結構變化機制更清楚顯示鎳鈦合金經過氫反應之後會產生氫的化合物。
本篇主要研究浸泡在口腔環境中氫化鈦的生成。而表層的結構會依氫的含量和在口腔環境中腐蝕週期不同而所不同。
氫化鈦主要形成於多孔洞的結構當中,多孔的氧化物層薄膜會引起氫的聚集。氫化鈦相在漸漸增加的腐蝕週期中生成。氫化鈦則是藉由鈦與氫作用而產生。多孔性的氫化鈦能增加氫脆化的可能,它的機械性質也會明顯地變化。我們相信,鎳鈦合金在口腔中的機械強度變化,氫化鈦扮演著一個很重要的角色。
Abstract
NiTi alloys have been increasing number of industrial and medical applications such as orthodontic arch wires and dental implants.
It is due to their unique shape memory, excellent ductility, better fatigue life as well as their superelastic effect. Moreover, NiTi alloys exhibit good corrosion resistance and biocompatibility. However, it has been reported that properties of NiTi alloys decrease in corrosive environments such as oral environment. In the present study, the purpose is to examine the hydrogen absorption induced the microstructure variations in oral environment on the degradation of the mechanical properties of NiTi alloys. In addition, NiTi alloys with and without hydrogen reaction will be investigated and discussed clearly.
To investigate the effect of hydrogen on microstructure and mechanical properties of NiTi alloys, the electrical behaviors and surface properties of NiTi alloys were analyzed by FESEM, GIXRD, DSC and HRXPS. The formation of titanium hydride was investigated by immersing NiTi alloys in oral environment. It revealed NiTi alloys with hydrogen charging induced titanium hydride compounds. The production of the compound phases was dependent on hydrogen contents and corrosion periods in oral environment. The titanium hydrides result in formation of porous structure. The porous hydride layer induced the high hydrogen aggregation.
The titanium hydride phase was formed as increasing corrosion periods in oral environment. Titanium hydride is obtained by titanium with hygrogen reaction. Porous titanium hydride can enhance hydrogen embrittlement. It will result in the mechanical strength decreases obviously. The titanium hydride plays an important role in decreasing mechanical strength. It is believed that microstructure variation of NiTi alloys in oral environment can induced strength decrease obviously.
Contents
Page
摘要 i
Abstract iii
誌謝 v
Contents vi
Abbreviations xi
Preface 1
Chapter 1 Introduction 2
1.1 General background 2
1.2 Motivation of this study 3
1.3 Purpose of this study 3
1.4 Hypothesis of this study 5
1.5 Organization of the thesis 6
Chapter 2 Literature Review 7
2.1 Properties of Ti-based alloy 7
2.2 Properties of NiTi alloys 8
2.3 Characterization of TiO2 on NiTi alloys 12
2.4 Decomposition and Absorption Mechanisms 14
2.4.1 The Oral environment 14
2.4.2 Corrosion and Degradation 14
2.4.3 Toxicodynamic Considerations 14
2.4.4 Influence of treatment 15
2.4.5 Addition and impuruties 16
Chapter 3 Materials and Methods 17
3.1 Materials and sample pretreatment 17
3.2 Surface characterization 17
3.3 Experiment instruments 19
Chapter 4 Results 28
Chapter 5 Discussion 50
Chapter 6 Conclusions 52
References 53
References
1.J. Lausmaa, B. Kasemo and H. Mattsson, Appl Surface Sci., 44, 133 (1990).
2.M. Long and H. J. Rack, Biomaterials, 19, 1621 (1998)
3.B. Kasemo, J. Prosthet. Dent., 49, 832 (1983).
4.D. F. Williams, J. Med. Eng. Technol., 1, 266(1977).
5.R. Adell, Int. J. Oral Maxillofac. Implants, 5, 347 (1990).
6.X. X. Wang, S. Hayakawa, K. Tsuru and A. Osaka, Biomater., 23, 1353 (2002).
7.K. Gutensohn, C. Beythien, J. Bau, T. Fenner, P. Grewe, R. Koester, K. Padmanaban and P. Kuehnl, Thromb. Res., 99, 577 (2000).
8.P. Tengvall and I. Lundström, Clin. Mater., 25(2), 136 (1990).
9.R. L. Williams, S. A. Brown and K. Merrit, Biomaterials, 9, 181 (1988).
10.M. Pourbaix, Biomaterials, 5, 122 (1984).
11.N. Huang, P. Yang, X. Cheng, Y. Leng, X. Zheng, G. Gai, Z. Zhen, F. Zhang, Y. Chen, X. Liu, and T. Xi, Biomater., 19, 771 (1998).
12.K. Merritt and SA. Brown, J. Biomed. Mater. Res., 22, 111(1988).
13.William A. Brantley Theodore Eliades, Orthodontic Materials, Thieme, New York, 1:8(2001).
14.Laura Isabel Barbero Bernal, Cyclic Behavior of Superelastic Nickel-Titanium and Nickel-Titanium-Chromium Shape Memory Alloys, Georgia Institute of Technology,20, 26 (2004).
15.K. Yokoyama, K. Kaneko, K. Moriyama, K. Asaoka, J. Sakai, M. Nagumo, Wiley Periodicals, Inc., 182-187(2003).
16.Speck K.M., A. Wennerberg, C. Johansson, L. T. Skovgaard, and E. Hjorting-Hansen, J. Biomed. Mater. Res., 29, 1223. (1990).
17.Edie J.W., N. Katsala, P. G. Koutsoukos, and Y. F. Missirlis, Biomaterials, 22, 87 (1981)
18.Sarkar N.K., D. A. Deporter, P. A. Watson, and N. Valiquettl, J. Biomed. Mater. Res., 25, 467 (1979)
19.Hwang W.S., S. K. Qi, L. He, J. Z. Zhao, and X. D. Zhang, J. Mater. Sci. Mater. Med., 13, 457 (1996)
20.H. Kim, J. W. Johnson, The Angle Orthodontist, Vol. 69, No.1(1999).
21.G. Rahilly, Journal of Orthodontics, Vol. 30, 171–174(2003)
22.Buser D., Schenk R.K., Steinemann S., Fiorellini J.P., Fox Ch. and Stich H., “Influence of surface characteristics on bone integration of titanium implants: A histomorphometric study in miniature pigs.”, J. Biomed. Materi. Res., 25:889 (1991).
23.Velten D., Biehl V., Aubertin F., Valeske B., Possart W. and Breme J., “Preparation of TiO2 layers on cp-Ti and Ti-6Al-4V by thermal and anodic oxidation and by sol-gel coating techniques and their characterization.”, J. Biomed. Materi. Res., 59:18 (2002).
24.Ask M., Rolander U., Lausmaa J. and Kasemo B., “Microstructure and morphology of surface oxide films on Ti-6Al-4V.”, J. Mater. Res., 5:1662 (1990).
25.William A. Brantley Theodore Eliades, Orthodontic Materials, Thieme, New York, 15:288-291(2001).
26.Graber, Vanarsdall, Vig, Orthodontics, Fourth Edition, ELSEVIER MOSBY, 361,363(2005).
27.S. I. Tanaka, M. Aonuma, N. Hirose and T. Tanaki, J. Electrochem. Soc., 11, 167 (2002).
28.S. I. Tanaka, M. Aonuma, N. Hirose and T. Tanaki, J. Electrochem. Soc., 12, 186 (2002).
29.H. H. Kim, F. Miyaji, T. Kokubo, S. Nishiguchi and T. Nakamura, J. Biomed. Materi. Res., 5, 100 (1999).
30.H.C. Cheng, S.Y. Lee, C.C. Chen, Y.C. Shyng and K.L. Ou, “Titanium nanostructural surface processing for improved biocompatibility”, Applied Physics Letters, 89, 173902-1~173902-3 (2006).
31.Y.H. Shih, C.T. Lin, C.M. Liu, C.C. Chen, C.S. Chen, and K.L. Ou, “Effect of nano-titanium hydride on formation of multi-nanoporous TiO2 film on Ti”, Applied Surface Science, in press (2006).
32.H.C. Cheng, S.Y. Lee, C.C. Chen, Y.C. Shyng, and K.L. Ou, “Influence of Hydrogen Charging on the Formation of Nanostructural Titania by Anodizing with Cathodic Pretreatment”, Journal of The Electrochemical Society, in press, (2007)
33.C.L. Chen, C.C. Chen, K.L. Ou, and M.H. Lin, “Research of microstructure and biocompatible properties on Fe-Al-Mn alloy with recast layer by electro-discharge machining”, Journal of Chinese Society of Mechanical Engineers, in press, (2007). (EI)
34.K.L. Ou, C.C. Chang, C.C. Chen, S.Y. Lee and C.F. Huang, “Glow Discharge Plasma Treatment Enhances Hemocompatibility onto Nanoporous Titanium Oxide Film”, Key Engineering Materials, in press, (2007). (SCI)
35.Kaelble D. H. and Moacanin J., “A surface energy analysis of bioadhesion.”, Polymer, 1977; 18, p.475.
36.Ruckenstein E. and Gourisankar S. V., “A surface energetic criterion of blood compatibility of foreign surface.”, J Colloid Interface Sci, 1984; 10(2), p.436.
37.Baszkin A. and Lyman D. J., “The interaction of plasma proteins with polymers. I. Relationship between polymer surface energy and protein adsorption/desorption.”, J Biomed Mater Res., 1980; 14(4), p.393.
38.DeLangis P. A. and Yen T. F., “Electronic antihemocoagulation.”, Biomater Med Devices Artif Organs, 1986; 14, p.195.
39.Kawamoto N., Mori H., Terano M. and Yui N., “Blood compatibility of polypropylene surfaces in relation to the crystalline-amorphous microstructure.”, J Biomater Sci Polymer Ed , 1997; 8(11), p.859.
40.Wälivaara B, Lundström I and Tengvall P, Clin. Mater., 12, 141 (1993).
41.Sundgren J-E, Bodö P and Lundström I, J. Colloid Interface Sci., 110, 9 (1986).
42.B. Feng, J. Y. Chen, S. K. Qi, L. He, J. Z. Zhao and X. D. Zhang, J. Mater. Sci Mater. Med., 13, 457 (2002).
43.L. Hao, J. Lawrence. Effects of Nd:YAG laser treatment on the wettability characteristics of a zirconia-based bioceramic. Optics and Lasers in Engineering, 44:803-814, 2006.
44.J. Lausmaa, B. Kasemo, and H. Mattson, Appl. Surf. Sci., 44, 133 (1990a).
45.D. L. Cochran, D. Buser, F. Higginbottom, A. Lussi, and R. K. Schenk, ITI-Word Symposium, 28-29, April, Washington DC, USA (1995).
46.L. Schlapbach and T. Riesterer, Appl. Phy., A32, 169 (1983).
47.M. Jobin, M. Taborelli and P. Descouts, Appl. Surf. Sci., 72, 363 (1993).
48.H. Chatbi, M. Vergnat and G. Marchal, Appl. Phy. Letters, 64, 1210 (1994).
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top