( 您好!臺灣時間:2021/04/21 13:26
字體大小: 字級放大   字級縮小   預設字形  


研究生(外文):Lai ChiaWei
論文名稱(外文):Analysis of the performance for Apollo-V solar car
指導教授(外文):Herchang Ay
外文關鍵詞:Solar carchallenge matchefficiency of going monitoperformance behaves
  • 被引用被引用:4
  • 點閱點閱:937
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:2
本研究針對本校太陽能車Apollo-V動態運行性能分析,採用兩種不同的馬達NGM及 MITSUBA,碳纖維夾紙蜂巢之複合材料製成飛機翼型設計低風阻的車身外型,砷化鎵衛星級太陽能電池,高容量鋰電池蓄電,MPPT功率放大器,以ICP CON介面做監測系統,記錄動態運行時,太陽能電池產生的電量,馬達所消耗電量,蓄電池殘電量,及運行速度。因車外型為翼型段面,因此當車在高速行駛時會有空氣浮力產生,而減輕車子本生的重量,降低車在低速行駛時所消耗的能量。
The progress with era, the development of the new, recycled energy, make now have importance of application about the energy industry with extremely apparent technology, is it have the tendency to generalize on having year to apply solar energy to in the whole world, our country gets apparent development on the energy policy. In September of 2005, use the teachers and students of University of Science and Technology to make the fifth solar energy car of Apollo that finished in a totally new way in state-run Kaohsjung, challenge the eighth world solar energy car challenge match, schedules 3021 of total length need vertical to cross Australia inland, contest this in the world all history and solar energy car match of name the most most, since September 25 the present session, the game lasts 8 days.
This research is directed against this car Apollo-V dynamic operation of school solar energy of analysis of performance, adopt two different motor NGM and MITSUBA, carbon fibre insert paper composite, bee of nest make plane wing section design low automobile body appearance that wind hinders, GaAs satellite grades of solar cell, high capacity lithium battery hold electricity, MPPT power amplifier, make monitoring system by interface with ICP CON, write down when running dynamically, electric consumption that the solar cell produce, electric consumption, the incomplete electric consumption of the battery, and the speed of operation that the motor consumes.Because car appearance wing section each, have air buoyancy produce when go as train at a high speed, and lighten the originally raw weight of the car, reduce the energy consumed while going at a low speed of car.
Study in initial stage and carry on the dynamic operation parameter value of basic simulation first, calculate out dissipation energy state of various kinds of speed, bring with regular parameter into definite value Crr is it turn coefficient of friction, m for car weight to roll for wheel (including driving and battery) g is the acceleration of gravity, ρ is the air density, the automobile body of CdA is accumulating the area and air resistance coefficient product to the section, V, for speed, η, for the efficiency of the transmission (including the efficiency of the motor and change value relative to speed of transmission efficiency of machine) ,Must be in order to appear. With running and testing dynamically actually, efficiency monitors and notes down every test value through going, test the energy consumption state under different speeds with the regular voltage, and the parameter that calculate with simulation is compared, find out Apollo-V performance and behave and assess.
Will sound the future design and behave in behavior of Apollo-V performance, there can be break-through of nearly one step, is it have respectively consult the basis year to apply to in solar energy, can demonstrate the prospect of different development in the future, can do deeper research.
目 錄
致 謝
目 錄
表 目 錄
圖 目 錄
第一章. 緒論
1.1 前言
1.2 研究動機與目的
1.3 文獻回顧
1.4 研究方法與論文架構
第二章. 太陽能車概述
2.1 太陽能車基本原理
2.2 太陽能車車體設計製作
2.3 太陽能車動力系統
2.4 太陽能車對外型要求
2.5 太陽能車對外型設定
2.6 Apollo-V太陽能車規格
第三章. 太陽能車性能模式
3.1 性能模式建立的目的
3.2 空氣阻力
3.3 滾動阻力
3.4 所需電力消耗
3.5 太陽能車重心位置計算公式
第四章. 動態運行實驗與討論
4.1 不同馬達之極速表現
4.2 不同時速下之耗能分
4.3 太陽能車挑戰賽行駛記錄
第五章. 結論與未來方向
5.1 結論
5.2 未來方向
第六章. 參考文獻
[3]艾和昌,2004,"腦力運動—第七屆世界太陽能車挑戰賽日誌",能源報導月刊-再生能源,pp. 22-25,民國93年1月號。
[5]Shirayama, S and Kuwahara, K, Flow visualization technique for computational fluid dynamics, in Flow Visualization V, Reznicek, R.,Ed., Hemisphere, Washington, D.C., 297-304,1990.
[6]Suter, P., Revesz, Z., Tanner, P. A., and Gottschalk, G., Reconstruction of velocity vector in a three-dimensional flow field from photographed tracer trajectories, in Flow Visualization V, Reznicek, R., Ed., Hemisphere, Washington, D. C., 272- 278, 1990.
[7]Son, S.Y, Kihm, K.D., Ham,J.-C, PIV Flow for Heat Transfer Characterization in Two-Pass Square Cannel With Smooth and 90° Ribbed Walls, International Journal of Heat Transfer, Vol. 45, 4809-4822, 2002.
[8]Ekkad, S., Han, J. C., Detailed Heat Transfer Distributions in Two-Pass Square Channels With Rib Turbulators, Int. J. Hest Mass Transfer.Vol. 40, 525-2537, 1997.
[9]Kim, K. C., Kim, S. K. and Yoon, S. Y., PIV measurements of flow and turbulent characteristics of a found jet in cross-flow, Journal of Visualization, Vol.3, No.2, 157-164, 2000.
[10]Sakakibara, J., Hishida, K. and Maeda, M., Measurements of thermally stratified pipe flow using image processing techniques, Experiments in Fluids, Vol.16, 82-96, 1993.
[11]Eggels, J. G. M., Unger, F., Weiss, M. H., Westerweel, J., Adrian, R. J., Friedrich, R. and Nieuwstadt, F. T. M., Fully developed turbulent pipe flow: A comparison between direct numerical simulation and experiment, Journal of Fluid Mechanics, Vol. 268, 175-209,1994.
[12]Tisserant, D. et al., Rotor Blade to Blade Measurements Using Particle Image Velocimetry, ASME Journal of Turbomachinery, 119-2, 176, 1997.
[13]Han, D. and Mungal, M.G., Simultaneous Measurement of Velocity and CH Layer Distribution in Turbulent Non-premixed Flames, Proceedings of the Combustion Institute, Vol.28, 261-267, 2000.
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔