中文文獻
1.王育民,2004,知識管理系統成功模式建構與驗證之研究,國立中山大學資訊管理學系研究所,博士論文。2.吳明隆,涂金堂,2005,SPSS與統計應用分析,二版,五南圖書出版社。
3.吳采芳,2002,修正TAM模型在線上遊戲行為因素分析之研究,國防管理學院資源管理研究所,碩士論文。4.吳建宏,2004,股市投資人使用券商網站意願之研究,私立義守大學資訊管理學系碩士班,碩士論文。5.李明德、曾俊欽,2003,科技客服-客服中心的系統建置,台灣培生教育出版。
6.李鍵壕,2004,高雄市公務人員對知識管理系統之科技接受度,國立中山大學公共事務管理研究所,碩士論文。7.邱皓政,2000,量化研究與統計分析,初版,五南書局。
8.張文彬,2002,顧客關係管理的核心活動在企業界應用過程之探討,私立中原大學企業管理研究所,碩士論文。9.張瑞芬,張力元,2003,顧客服務管理:CRM實戰理論與實務,初版,華泰書局。
10.許由忠,2005,影響線上遊戲玩家接受遊戲之相關因素探討,國立東華大學企業管理學系,碩士論文。11.陳文華,2000,運用資料倉儲技術於顧客關係管理,能力雜誌,第527期,1月,頁132-138。12.陳泳成,2003,以修正後的科技接受模式探討影響「使用者自建系統接受」之因素,國立中山大學資訊管理學系研究所,碩士論文。13.陳順宇,2005,多變量分析,四版,華泰書局。
14.陳煜鑫,2003,使用解構之期望符合論探討WWW持續使用之影響因素,國立高雄第一科技大學資訊管理所,碩士論文。15.陳碧玉,2004,公文電子化系統效能之研究—以屏東縣政府為例,國立高雄第一科技大學資訊管理所,碩士論文。16.葉芳枝,2003,國軍醫院主管採用顧客關係管理之意願及影響關鍵因素之研究--以國軍醫院為例,國立中正大學資訊管理學系,碩士論文。17.董陳明,2003,企業電子郵件系統特性與規範對行為影響之研究,私立銘傳大學資訊管理學系碩士在職專班,碩士論文。18.蘇伯方,2004,即時傳訊軟體採用模式之研究,國立中山大學傳播管理研究所,碩士論文。19.網站:IDC商國際數據資訊,http://www.idc.com.tw/index.htm
20.網站:資策會(MIC)資訊資料服務中心http://www.cisc.iii.org.tw/
Reference List
1.Adams, D. A., Nelson, R. R., & Todd, P. A. (1992). Perceived usefulness, ease of use and usage of information technology: a replication. MIS Quarterly, 16, 227-247.
2.Agarwal, R. & Prasad, J. (1999). Are individual differences germane to the acceptance of new information technologies? Decision science, 30, 361-391.
3.Ajzen, I. &. F. M. (1980). Understanding Attitudes & Predicting Social Behavior. Understanding Attitudes & Predicting Social Behavior.Prentice-Hall, Englewood Cliffs,NJ.
4.Ajzen, I. (1985). From Intentions to Actions: A Theory of Planned Behavior. Action-Control:From Cognition to Behavior, Heidelberg: Springer, 11-39.
5.Ajzen, I. (1991). The Theory of Planned Behavior. Organizational Behavior and Human Decision Processes, 50, 179-211.
6.Ajzen, I. (2001). Nature and operation of attitudes. Annual Review of Psychology, 52, 27–58.
7.Ajzen, I. (2002). Perceived behavioral control, self-efficacy, locus of control, and the theory of planned behavior. Journal of Applied Social Psychology, 32, 1-20.
8.Bagozzi, R. P. & Yi, Y. (1988). On the Evaluation for Structural Equation Models. Journal of the Academy of Marketing Science, 1, 74-94.
9.Bandura, A. (1977). Self-efficacy: Toward a unifying theory of behavioral change. Psychological Review, 84, 191-215.
10.Bandura, A. (1982). Self-efficacy mechanism in human agency. American Psychologist, 37, 122-147.
11.Bandura, A. (1984). Recycling misconceptions of perceived self-efficacy. Cognitive Therapy and Research, 8, 231-255.
12.Bandura, A. (1986). Social foundations of thought and action : A Social CognitiveTheory. Englewood Cliffs, NJ: Prentice-Hall..
13.Bandura, A. (1991). Social cognitive theory of self-regulation. Organizational Behavior and Human Decision Process, 50, 287.
14.Baumgartner, H. & Homburg, C. (1996). Applications of Structural Equation Modeling in Marketing and Consumer Research: A review. International Journal of Research in Marketing, 13, 139-161.
15.Brancheau, J. C. & Wetherbe, J. C. (1990). The adoption of spreadsheet technology: Testing innovation diffusion theory in the context of end-user computing. Information System Research, 1, 115-143.
16.Brown Irwin T.J. (2002) “Individual and Technological Factors Affecting Perceived Ease of Use of Web-based Learning Technologies in a Developing Country" EJISDC, 9, 5, 1-15
17.Burkhardt, M. E. & Brass, D. J. (1990). Changing patterns or patterns of change: The effects of a change in technology on social network structure and power. 35, 104.
18.Carmines, E. & McIver, J. (1981). Analyzing Models with Unobserved Variables: Analysis of Covariance Structures. Social measurement : Current Issues, Beverly Hills.
19.Chin, W. W. & Todd, P. (1995). On the Use, Usefulness, and Ease of Use of Structural Equation Modeling in MIS Research: A Note of Caution. MIS Quarterly, 19, 237-246.
20.Compeau, D. R. & Higgins, C. A. (1995). Computer self-efficacy: Development of a measure and initial test. MIS Quarterly, 19, 189-211.
21.Compeau, D. R. & Higgins, C. A. (1999). Social cognitive theory and individual reactions to computing technology: A longitudinal study. MIS Quarterly, 23, 145-158.
22.Davis, F. D. (1986). A technology acceptance model for empirically testing new end-user information systems: Theory and results. Doctoral dissertation, Sloan School of Management, Massachusetts Institute of Technology.
23.Davis, F. D. (1989). Perceived usefulness, perceived ease of use, and user acceptance of information technology. MIS Quarterly, 13, 319-340.
24.Davis, F. D., Bagozzi, R. P., & Warshaw, P. R. (1989). User acceptance of computer technology: a comparison of two theoretical models. Management Science, 35, 982-1003.
25.Delcourt, M. A. & Kinzie, M. B. (1993). Computer technologies in teacher ducation : the measurement of attitudes and self-efficacy. Journal of Research and evelopment in Education, 27, 35-41.
26.DeLone W.H. & McLean E.R. (2003). The DeLone and McLean model of information systems success: A ten-year update. Journal of Management Information Systems, 19, 9-30.
27.DeLone, W. H. & McLean, E. R. (1992). Information System Success:The Quest for the Dependent Variable. Information System Research, 3, 60-95.
28.Fishbein Martin (1967). Readings in Attitude Theory and Measurement, New York: John Weily.
29.Fishbein, M. a. A. I. (1975). Belief, Attitude, Intention and Behavior: A Introduction to Theory and Research. Journal of Leisure Research, 27, 61-84.
30.Fornell, C. R. & D.F.Larcker (1981). Structural Equation Models with Unobservable Variables and Measurement Error. Journal of Marketing Research, 18, 39-51.
31.Gable, G. G., Sedera, D., & Chan, T. (2003). Enterprise Systems Success: A Measurement Model. The 24th International Conference on InformationSystems, 576-591.
32.Gist, M. E., Schwoerer, C., & Rosen, B. (1989). Effects of alternative training methods on self-efficacy and performance in computer software training. Journal of Applied Psychology, 72, 307-313.
33.Grant, R. A. (1989). Building and Testing a Causal Models of an Information Technology's Impact. Proceedings of the Tenth ICIS, Boston, MA, -173.
34.Hair, J. F., Anderson, R. E., Tatham, R. L., & Black, W. C. (1998). Multivariate Data Analysis. N.Y.: Macmillan.
35.Hans van, d. H. (2003). Factors influencing the usage of Websites: The case of a generic portal in The Netherlands. Information & Management, 40, 541.
36.Henry C. Lucas, Jr. and VK Spitler(1999).Summer, Decision Science
37.Hill, T., Smith, N. D., & Mann, M. F. (1987). Role of efficacy expectations in predicting the decision to use advanced technologies: the case for computers. J.Applied Psychology, 72, 307-313.
38.Hu, P. J., Chau, P. Y. K., Sheng, O. R. L., & Tam, K. Y. (1999). Examining the Technology Acceptance Model Using Physician Acceptance of Telemedicine Technology. Journal of ManagementInformation Systems, 16, 91-112.
39.Hughes, R. E. (1986). Diachronic Variability in Obsidian Procurement Patterns in Northeastern California and Southcentral Oregon. University of CaliforniaPublications in Anthropology, 17.
40.Hwang, Y. & Yi, M. Y. (2002). Predicting The Use of Web-Base Information Systems:GIntrinsic Motivation and Self-Efficacy. Proceedings of 8th AmericasConference on Information Systems, New York: AMCIS, 1076-1081.
41.Igbaria M., Zinatelli N., Cragg P., & Cavaye Angele L.M. (1997). Personal computing acceptance factors in small firms: A structural equation model. MIS Quarterly, 21, 279-305.
42.Igbaria, M. & Tan, M. (1997). The consequences of information technology acceptance on subsequent individual performance. Information & Management, 32, 113-121.
43.Igbaria, M., Guimaraes, T., & Davis, G. B. (1995). Testing the determinants of microcomputer usage via a structural equation model. Journal of Management Information Systems, 11, 87-114.
44.Igbaria, M., Iivari, J., & Maragahh, H. (1995). Why do individuals use computer technology? A Finnish case study. Information & Management, 29, 227-238.
45.Igbaria, M., Parasuraman, S., & Baroudi, J. J. (1996). A motivational model of microcomputer usage. Journal of Management Information Systems, 13, 127-143.
46.Jackson, C., Chow, S., & Leitch, R. (1997). Understanding of the Behavioral Intention to Use An Information System. Decision Sciences, 28, 357-389.
47.Jaeho, H. & Ingoo, H. (2003). Performance measure of information systems (IS) in evolving computing environments: An empirical investigation. Information & Management, 40, 243.
48.Jennex, M. E. & Olfman, L. (2003a). A Knowledge Management Success Model: An Extension of DeLone and McLean's IS Success Model. The 9th Americas Conference on Information Systems, 2529-2539.
49.Jennex, M. E. & Olfman, L. (2003b). Organizational Memory (in C. W. Holsapple). Handbook on Knowledge Management 1, Springer-Verlag, New York, 207-234.
50.Joreskog, K. G. & Sorbom, D. (1996). LISREL8: User's Reference Guide. Mooresville: ScientificSoftware.
51.Karahanna, E. & Straub, D. W. (1999). The Psychological Origins of Perceived Usefulness and Ease-of-use. Information & Management, 35, 237-250.
52.Karahanna, E., Straub, D. W. & Chervany N. L. (1999). Information technology adoption across time: A cross-sectional comparison of pre-adoption and post-adoption beliefs. MIS Quarterly, 23, 183.
53.Kim, K. K. (1989). User Satisfaction: A Synthesis of Three Different Perspectives. The Journal of Information Systems, 4, 1-12.
54.Lederer, A. L., Maupin, D. J., Sena, M. P., & Zhuang, Y. (2000). The technology acceptance model and the World Wide Web. Decision Support System, 29, 269-282.
55.Levine, T. (1997). Commitment to learning : effects of computer experience, confidence and attitude. Journal of Research on computing in Education, 16, 83-105.
56.Lin, J. C. C. & Lu, H. (2000). Towards an understanding of the behavioral intention to use a web site. International Journal of Information Management, 20, 208.
57.Lucas Jr., Henry C. and V . K. Spitler,(1999). Technology Use and Performance: A Field Study of Broker Workstations, Decision Sciences,Spring, pp. 291-311
58.Malhotra, Y. & Galletta, D. F. (1999). Extending the Technology Acceptance Model to Account for Social Influence:Theoretical Base and Empirical Validation. Proceedings of the 32nd Hawaii International Conference on System Sciences, Hawaii: IEEE.
59.Mason, R. O. (1978). Measuring Information Output: A Communication Systems Approach. Information & Management, 1, 219-234.
60.Mathieson, K. (1991). Predicting user intentions: comparing the technology acceptance model with the theory of planned behavior. Information Systems Research, 2, 173-191.
61.McGill T., Hobbs V. & Klobas J. (2003). User-developed applications and information systems success: A test of DeLone and McLean's model. Information Resources Management Journal, 16, 24-45.
62.McKinney, V., Yoon, K., & Zahedi, F. (2002). The measurement of Web-customer satisfaction: An expectation and disconfirmation approach. Information Systems Research, 13, 296.
63.Molla, A. & Licker, P. S. (2001). E-Commerce Systems Success: An Attempt to Extend and Respecify the DeLone and McLean of IS Success. Journal ofElectronic Commerce Research, 2, 131-141.
64.Moon, J. W. & Kim, Y. G. (2001). Extending the TAM for a world-wide-web context. Information & Management, 38, 217-230.
65.Murphy, C. A., Coover, D., & Owen, S. V. (1989). Development and Validation of the Computer Self-Efficacy Scale. Educational and Psychological Measurement, 49, 893-899.
66.Myers, B. L., Kappelman, L. A., & Prybutok, V. R. (1998). A Comprehensive Model for Assessing the Quality and Productivity of the Information Systems Function: Toward a Theory for Information Systems Assessment. Information Systems Success Measurement, Idea Group Publishing, Harrisburg, Pennsylvania, 91-121.
67.Nunnally, J. (1978). Psychometric theory. New York: McGraw Hill.
68.Olivier, T. & F.Shapiro (1993). Self-efficacy and computers. Journal of Computer-Based Instrument, 20, 81-85.
69.Pitt, L. F., Watson, R. T., & Kavan, C. B. (1995). Service quality: A measure of information systems effectiveness. MIS Quarterly, 19, 173-187.
70.Reisinger, Y. & Turner, L. (1999). Structural equation modeling with Lisrel : Application in tourism. Tourism Management, 20, 71-88.
71.Roldan, J. L. & Millan, A. L. (2000). Analysis of the Information Systems Success Dimensions Interdependence: An Adaptation of the DeLone & McLean's Model in the Spanish EIS field. The BITWorld 2000 Conference.
72.Seddon, P. B. & Kiew, M. Y. (1996). A Partial Test and Development of DeLone and McLean's Model of IS Success. Australian Journal of Information Systems, 4, 90-109.
73.Seddon, P. B. (1997). A respecification and extension of the DeLone and McLean model of IS success. Information Systems Research, 8, 240.
74.Sedera, D., Gable, G., & Chan, T. (2003). Measuring Enterprise System Success: A Preliminary Model. The 9th Americas Conference on Information Systems.
75.Shannon, C. E. , & Warren, W. (1949). The Mathematical Theory of Communication. University of Illinois Press, Urbana, IL..
76.Straub, D., Limayem, M., & Karahanna-Evaristo, E. (1995). Measuring system usage: Implications for IS theory testing. Management Science, 41, 1328-1342.
77.Szajna, B. (1996). Empirical evaluation of the revised technology acceptance model. Management Science, 42, 85-92.
78.Taylor, S. & Todd, P. (1995). Assessing IT usage: The role of prior experience. MIS Quarterly, 19, 561.
79.Thompson, R. L., Higgins, C. A., & Howell, J. M. (1994). Influence of experience on personal computer utilization: Testing a conceptual model. Journal of Management Information Systems, 11, 167-188.
80.Torkzadeh, G. &. K. X. (1994). Factorial validity of a computer self-efficacy scale and the Educational and Psychological Measurement. Educational and Psychological Measurement, 54, 813-821.
81.Trepper, C. (2000). Customer Care Goes End-to-End. Information Week, May 15, 55-73.
82.Venkatesh, V. & Davis, F. D. (1996). A model of the antecedents of perceived ease of use: development and test. Decision Sciences, 27, 451-481.
83.Venkatesh, V. & Davis, F. D. (2000). A theoretical extension of the technology acceptance model: four longitudinal field studies. Management Science, 46, 186-204.
84.Venkatesh, V. & Speier, C. (1999). Computer technology training in the workplace: A longitudinal investigation of the effect of mood. Organizational Behavior and Human Decision Processes, 79, 1.
85.Venkatesh, V. (2000). Determinants of perceived ease of use: Integrating control, intrinsic motivation, and emotion into the technology acceptance model. Information Systems Research, 11, 342-365.
86.Venkatesh, V., Morris, M. G., & David, G. B. (2003). User acceptance of information technology: toward a unified view. MIS Quarterly, 27, 425-478.
87.Wixom, B. H. and Watson, H. J., (2001). An empirical investigation of the factors affecting data warehousing success. MIS Quarterly, 25, 17-41.
88.Xia W. & King W.R. (1996). Interdependencies between the determinants of user interaction and usage: An empirical test. in Proc.ICIS Cleveland, OH, 1-21.