跳到主要內容

臺灣博碩士論文加值系統

(44.220.184.63) 您好!臺灣時間:2024/10/04 06:37
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:曾泰富
研究生(外文):Tai-Fu Tseng
論文名稱:具有特殊光侷限層的10Gb/sFP雷射模組
論文名稱(外文):10Gb/s FP Laser with Extra Optical Confinement Layers
指導教授:郭進春郭進春引用關係施天從
指導教授(外文):Chin-Chun KuoTien-Tsorng Shih
學位類別:碩士
校院名稱:國立高雄應用科技大學
系所名稱:光電與通訊研究所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2006
畢業學年度:94
語文別:中文
中文關鍵詞:半導體雷射光主動元件量子井
外文關鍵詞:semiconductor laserTOSAquantum well
相關次數:
  • 被引用被引用:0
  • 點閱點閱:670
  • 評分評分:
  • 下載下載:84
  • 收藏至我的研究室書目清單書目收藏:0
在本論文中,我們提出在量子井的兩旁分別插入一層高折射率層來提升對雷射光束的侷限效益,此設計概念來自於具高侷限效益的雷射結構將有較佳的操作頻寬,有助於提升高頻調變的特性,此新式FP雷射結構的設計已將其操作速度從傳統的2.5Gb/s提升至可達10Gb/s。除此在本文中採用了砷化鋁鎵銦建構應力式多重量子井,由於材料本質的優秀特性更有助於改善調變頻寬與高溫操作時的特性表現。

在此所提出的新式FP雷射經由模擬計算的分析與實際量測已證實了具有良好的發光電流特性,除此所量得的大遠場角度也間接的驗證了高侷限效益要求的設計概念。根據如上的直流特性表現下,以正常的偏壓電流驅動做高頻調變時,雷射晶粒本質的最大的調變頻寬可達13.4GHz,且眼圖波形的傳輸也符合了10Gb/s 乙太網路所制定的傳輸標準。此雷射晶粒經由die/wire bond的技術,且考慮高頻訊號匹配下,被製作成標準TO CAN的形式,經由技巧性的封裝,形成同軸式模組,藉由反射係數S11參數的量測,操作頻率於DC到15GHz的範圍內此雷射模組均無強烈的高頻訊號反射,同時此模組再經由反射係數S21參數的量測也證實可操作的頻率達10GHz,配合電子式色散補償(EDC)技術將可實際的應用於10Gb/s光纖通訊中。
In this study, we inserted two highly refractive index layers in the active layer of FP-LD to confine the optical wave tightly. A tightly optical confined structure will increase the resonant frequency and improve the modulation performances. This novel structure could improve the modulation capability of conventional 2.5Gb/s FP laser up to 10Gb/s. AlGaInAs material was adopted in strained multiple quantum wells (S-MQW) which can improve both the modulation bandwidth and the high temperature performances further.

Our FP laser shows a good light emission characteristic and large far-filed emission angles as an evidence of highly confined structure. On account of the above, under a reasonable bias and modulation condition, the maximum modulation frequency f3dB of the intrinsic chip achieves 13.4GHz and the waveform open clearly and meet the requirement of 10Gb/s Ethernet standard. After a carefully RF matching design and skillfully assembling process, the diode was packaged into the coaxial module. RF reflection measurement shows this module has no strong reflection in RF signal when operated from DC to 15GHz. The maximum modulation frequency f3dB achieves 10GHz which ensures the feasibility of this module in the EDC approach for 10Gb/s application.
中文摘要 --------------------------------------------------------------------------- i
英文摘要 --------------------------------------------------------------------------- ii
誌謝 --------------------------------------------------------------------------- iii
目錄 --------------------------------------------------------------------------- iv
表目錄 --------------------------------------------------------------------------- vi
圖目錄 --------------------------------------------------------------------------- vii
一、 序論--------------------------------------------------------------------- 1
1.1 研究動機--------------------------------------------------------------- 1
1.2 相關文獻討論--------------------------------------------------------- 4
1.3 內容提要--------------------------------------------------------------- 8
二、 理論分析--------------------------------------------------------------- 10
2.1 波導模態--------------------------------------------------------------- 10
2.1.1 Transverse 模態------------------------------------------------------ 10
2.1.2 Lateral模態------------------------------------------------------------ 13
2.2 Rate equation ---------------------------------------------------------- 15
2.2.1 雷射穩態特性--------------------------------------------------------- 17
2.2.2 暫態反應--------------------------------------------------------------- 19
三、 結構設計與模擬分析------------------------------------------------ 23
3.1 結構設計--------------------------------------------------------------- 23
3.1.1 主動層------------------------------------------------------------------ 25
3.1.2 特殊光侷限層--------------------------------------------------------- 27
3.2 模擬分析--------------------------------------------------------------- 28
3.2.1 LaserMod軟體簡介與建構雷射結構----------------------------- 28
3.2.2 雷射模擬相關參數設定--------------------------------------------- 30
3.2.3 模擬計算與特性分析------------------------------------------------ 33
四、 雷射製程--------------------------------------------------------------- 44
4.1 基礎結構磊晶成長--------------------------------------------------- 44
4.2 脊狀波導的形成------------------------------------------------------ 46
4.3 電流視窗開啟--------------------------------------------------------- 51
4.4 製作P型金屬導電層------------------------------------------------ 53
4.5 晶圓背面研磨與拋光------------------------------------------------ 56
4.6 製作n型金屬導電層------------------------------------------------- 56
4.7 後續製程--------------------------------------------------------------- 57
五、 封裝--------------------------------------------------------------------- 60
5.1 雷射晶粒的die bond與wire bond -------------------------------- 61
5.2 匹配電阻置入--------------------------------------------------------- 61
5.3 光主動元件製作------------------------------------------------------ 62
六、 結果分析--------------------------------------------------------------- 63
6.1 雷射晶粒的低頻(靜態)量測---------------------------------------- 64
6.1.1 發光-電流量測-------------------------------------------------------- 64
6.1.2 遠場角度量測--------------------------------------------------------- 66
6.1.3 雷射發光頻譜的量測------------------------------------------------ 67
6.2 雷射晶粒高頻(動態)特性量測------------------------------------- 68
6.2.1 頻率響應量測--------------------------------------------------------- 69
6.2.2 雷射晶粒眼圖量測--------------------------------------------------- 70
6.3 光主動元件(TOSA)特性量測-------------------------------------- 71
七、 結論--------------------------------------------------------------------- 75
參考文獻 --------------------------------------------------------------------------- 76
[1]吳曜東,“光纖原理與應用”,全華圖書.
[2]R. Paoletti, M. Agresti, D. Bertone, L. Bianco, C. Bruschi, A. Buccieri, R. Campi, C. Dorigoni, P. Gotta, M. Liotti, G. Magnetti, P. Montangero, G. Morello, C. Rigo, E. Riva, D. Soderstrom, S. Stano, P. Valenti, M. Vallone, M. Meliga, “Highly reliable and high yield 1300 nm InGaAlAs directly modulated ridge Fabry-Perot lasers, operating at 10 Gb/s, up to 110ºC, with constant current swing”, Technical Digest, Optical Fiber Communication Conference, Vol.6, PDP15, 6-11 March. 2005.
[3]安捷倫科技 Michael Lawton.
http://211.147.225.34/gate/big5/www.hqew.com/info/newshtm/200576105946247392.htm
[4]J.P. Weem, P. Kirkpatrick, J.M. Verdiell, “Electronic dispersion compensation for10 Gigabit communication links over FDDI legacy multimode fiber”, Optical Fiber Communication Conference, Vol.5, 6-11 March 2005.
[5]K. Uomi, S. Sasaki, T. Tsuchiya, H. Nakano, N. Chinone, “Ultralow chirp and high-speed 1.55 μm multiquantum well λ/4-shifted DFB lasers”, IEEE Photonics Technology Letters, Issue 4., Vol.2, pp. 229-230, April 1990.
[6]K. Uomi, M. Aoki, T. Tsuchiya, M. Suzuki, N. Chinone, “Dependence of relaxation oscillation frequency and damping K factor on the number of quantum wells in 1.55 μm InGaAsP DFB lasers”, IEEE Photonics Technology Letters, Issue 6, Vol.3, pp.493-495, June 1991.
[7]M. Aoki, K. Uomi, T. Tsuchiya, M. Suzuki, N. Chinone, “Enhanced relaxationoscillation frequency and reduced nonlinear K-factor in InGaAs/InGaAsP MQW λ/4-shifted DFB lasers “, IEEE Electronics Letters, Issue 22, Vol.26, pp.1841 – 1843, 25 Oct. 1990.
[8]M. Aoki, M. Suzuki, M. Takahashi, H. Sano, T. Ido, T. Kawano, A. Takai, “High-speed (10 Gbit/s) and low-drive-voltage (1 V peak to peak) InGaAs/InGaAsP MQW electroabsorption-modulator integrated DFB laser with semi-insulating buried heterostructure”, IEEE Electronics Letters, Issue 12, Vol.28, pp. 1157-1158, 4 June 1992.
[9]M. Aoki, M. Takahashi, M. Suzuki, H. Sano, K. Uomi, T. Kawano, A. Takai, “High-extinction-ratio MQW electroabsorption-modulator integrated DFB laser fabricated by in-plane bandgap energy control technique”, IEEE Photonics Technology Letters, Issue 6, Vol.4, pp 580-582, June 1992.
[10]M. Okai, T. Tsuchiya, “Tunable DFB lasers with ultra-narrow spectral linewidth”, IEEE Electronics Letters, Issue 4, Vol.29, pp. 349 – 351,18 Feb. 1993.
[11]M. Okai, M. Suzuki, T. Taniwatari, “Strained multiquantum-well corrugation- pitch-modulated distributed feedback laser with ultranarrow (3.6 kHz) spectral linewidth”, IEEE Electronics Letters, Issue 19, Vol.29, pp. 1696 – 1697, 17 Sept. 1993.
[12]K. Uomi, M. Aoki, T. Tsuchiya, A. Takai, “Dependence of high-speed properties on the number of quantum wells in 1.55 μm InGaAs-InGaAsP MQW λ/4-shifted DFB lasers”, IEEE Journal of Quantum Electronics, Issue 2, Vol.29, pp.355-360, Feb. 1993.
[13]M. Okai, M. Suzuki, M. Aoki, “Complex-coupled λ/4-shifted DFB lasers with a flat FM response”; Selected Topics in IEEE Journal of Quantum Electronics, Issue 2, Vol.1, pp. 461-465, June 1995.
[14]M. Aoki, M. Komori, A. Taike, R. Yamabi, K. Uomi, “Low-power-consumption thin-film heater-loaded wavelength-tunable DFBlaser”, APCC/OECC '99. Fifth Asia-Pacific Conference and Fourth Optoelectronics and Communications Conference, Vol.2, pp. 1548-1549, 18-22 Oct. 1999.
[15]T.K. Sudoh, D. Takemoto, D.; T. Tsuchiya, M. Aoki, S. Tsuji, “Highly reliable 1.3-μm InGaAlAs MQW DFB lasers” Semiconductor Laser Conference, IEEE 17th International Conference Digest, pp. 55 – 56, 25-28 Sept. 2000.
[16]K. Nakahara, T. Tsuchiya, T. Kitatani, K. Shinoda, T. Kikawa, F. Hamano, S. Fujisaki, T. Taniguchi, E. Nomoto, M. Sawada, T. Yuasa, “12.5-gb/s direct Modulation up to 115℃ in 1.3um InGaAlAs-MQW RWG DFB lasers with notch-free grating structure”, Journal of Lightwave Technology, Issue 1, Vol.22, pp. 159-165, Jan. 2004
[17]T. Sasaki, H. Yamazaki, N. Henmi, H. Yamada, M. Yamaguchi, M. Kitamura, I. Mito, “Extremely low threshold current operation in 1.5-μm MQW-DFB laser diodes with semi-insulating InP current blocking region”, Journal of Lightwave Technology, Issue 9, Vol.8, pp. 1343-1349, Sep 1990.
[18]M. Yamaguchi, S. Takano, N. Henmi, K. Uehara, H. Hasumi, M. Shikada, I. Mito, “κL optimization for static and dynamic single longitudinal mode operation in 1.55μm λ/4 shifted DFB LD”, IEEE Global Telecommunications Conference, vol.2, pp. 1281-1285, Dec. 1990.
[19]M. Kitamura, H. Yamazaki, H. Yamada, S. Takano, K. Kosuge, Y. Sugiyama, M. Yamaguchi, I. Mito, “High performance and highly reliable λ/4 shifted MQW-DFB-DC-PBH-LDs for Gb/s coherent optical communication systems”, IEEE Journal of Quantum Electronics, Issue 6, Vol.29, pp. 1728 – 1735, June 1993.
[20]H. Yamazaki, M. Yamaguchi, M. Kitamura, “Spectral linewidth rebroadening in MQW-DFB LDs caused by spontaneous emission noise in SCH/barrier layers”, IEEE Photonics Technology Letters, Issue 3, Vol.6, pp.341-343, March 1994.
[21]Y. Sakata, T. Morimoto, Y. Inomoto, T. Murakami, H. Hasumi, “Strained MQW- BH-LDs and integrated devices fabricated by selective MOVPE”, Indium Phosphide and Related Materials, Eighth International Conference, pp. 761-764, 21-25 April 1996.
[22]H. Yamazaki, Y. Sakata, M. Yamaguchi, Y. Inomoto, K. Komatsu, “Low drive voltage (1.5 Vp.p.) and high power DFB-LD/modulator integrated light sources using bandgap energy controlled selective MOVPE”, IEEE Electronics Letters, Issue 2, Vol. 32, pp. 109-111, 18 Jan. 1996.
[23]Yu. Furushima, K. Kudo, Y. Muroya, Y. Sakata, Y. Inomoto, K. Fujichi, M. Ishizaka, M. Yamaguchi, ”1560- to 1610-μm wavelength EA-modulator integrated DFB-LDs for extended-band 2.5-Gb/s/ch and 10-Gb/s/ch WDM systems”, Optical Fiber Communication Conference, 1999, and the International Conference on Integrated Optics and Optical Fiber Communication. Technical Digest, Vol.2, pp. 131-133, 21-26 Feb. 1999.
[24]T. Okuda, Y. Muroya, S. Ishikawa, R. Kobayashi, K. Tsuruoka, Y. Ohsawa, T. Nakamura, “Low-operation-current and highly-reliable 1.3-/spl mu/m AlGaInAs strain compensated MQW-BH-DFB lasers for 100℃, 10-Gb/s operation”, Optical Fiber Communication Conference, Vol.2, 23-27 Feb. 2004.
[25]S. Kakimoto, Y. Nakajima, Y. Sakakibara, H. Watanabe, A. Takemoto, N. Yoshida, “Extremely narrow spectral linewidth and low chirping of the MQW-DFB-PPIBH laser diode”, IEEE Journal of Quantum Electronics, Issue 9, Vol.26, pp.1460-1466, Sept. 1990.
[26]H. Watanabe, T. Aoyagi, A. Takemoto, T. Takiguchi, E. Omura, “InGaAsP strained MQW-DFB lasers with high resonance frequency and low distortion for high speed analog transmission”, Indium Phosphide and Related Materials, Conference Proceedings, Seventh International Conference, pp.504-507, 9-13 May 1995.
[27]T. Aoyagi, A. Takemoto, B. Omura, “1.3-μm strained MQW-DFB lasers with extremely low intermodulation distortion for high-speed analog transmission Watanabe", IEEE Journal of Quantum Electronics, Issue 6, Vol.32, pp.1015-1023, June 1996.
[28]S. Kakimoto, H. Watanabe, “Threshold current, differential gain, and relaxation resonance frequency of 1.55-μm bulk and MQW DFB laser diodes” IEEE Journal of Quantum Electronics, Issue 7, Vol.34, pp. 1231-1239, July 1998.
[29]G. Sakaino, Y. Hisa, K. Takagi, T. Aoyagi, T. Nishimura, E. Omura, “Transmission characteristics of uncooled and directly modulated 1.3 micrometers distributed feedback laser diode for serial 10 Giga bit Ethernet”, Semiconductor Laser Conference, IEEE 17th International Conference Digest, pp. 89-90, 25-28 Sept. 2000.
[30]T. Takiguchi, Y. Hanamaki, T. Kadowaki, T. Tanaka, M. Takemi, N. Tomita, Y. Mihashi, E. Omura, “High speed 1.3 μm AlGaInAs DFB-LD with λ/4-shift grating”, Indium Phosphide and Related Materials, IEEE International Conference, pp. 140-142 14-18 May 2001.
[31]S. Shirai, Y. Tatsuoka, C. Watatani, T. Ota, K. Takagi, T. Aoyagi, E. Omura, N. Tomita, “120℃ uncooled operation of direct modulated 1.3um AlGaInAs-MQW DFB laser diodes for 10Gb/s telecom applications”, Optical Fiber Communication Conference, Vol.2, 23-27 Feb. 2004.
[32]G..P. Agrawal, N.K. Dutta,“Long wavelength Semiconductor Lasers”, Van nostrand reinhold electrical/computer science and engineering series.
[33]史國光,“現代半導體與雷射二極體材料技術",全華圖書.
[34]T. Ishikawa, J.E. Bowers, “Band lineup and in-plane effective mass of InGaAsP or InGaAlAs on InP strained-layer quantum well”, IEEE Journal of Quantum Electronics, Issue 2, Vol.30, pp. 562-570, Feb. 1994.
[35]J. Piprek, J.K. White, A.J. SpringThorpe, “What limits the maximum output power of long-wavelength AlGaInAs/InP laser diodes”, IEEE J. Quantum Electron, Vol.38, pp.1253-1259, 2002.
[36]Selmic, S.R.; Tso-Min Chou; Jiehping Sih; Kirk, J.B.; Mantle, A.; Butler, J.K.; Bour, D.; Evans, G.A. “Design and characterization of 1.3-μm AlGaInAs-InP multiple-quantum-well lasers”, IEEE Journal of Selected Topics in Quantum Electronics, Issue 2, Vol.7, pp. 340 – 349,March-April 2001.
[37]S. D. Hersee, B. de Cremoux, and J. P. Duchemin, “Some Characteristics of the GaAs/GaAlAs Graded-Index Separate-Confinement Heterostructure Quantum Well Laser Structure,” Appl. Phys. Lett., vol. 44, pp. 476~478, 1984.
[38]T. Ishikawa, T. Higashi, T.Uchida, T.Fujii, T.Yamamoto, H.Shoji, and M. Kobayashi, “Evaluatiom of differential gain of 1.3um AlGaInAs/InP strained MQW lasers”, 10th Intern. Conf. on Indium phosphide and Related Materials, ThP-55, 11-15 May. 1998.
[39]LaserMod by RSoft Software (2004). Available: http://www.rsoftdesign.com.
[40]J.D Ralston, S. Weisser, I. Esquivias, E.C. Larkins, J. Rosenzweig, P.J.Tasker, and J. Fleissner, “Control of differential gain, nonlinear gain and damping factor for high-speed application of GaAs-based MQW lasers”, IEEE Journal of quantum electronics, Vol. 29, pp. 1648-1659, JUNE 1993.
[41]K. Uomi, T. Tsuchiya, N. Nakano, M. Aoki, M. Suzuki and N. Chinone, “High-speed and ultralow-chirp 1.55um multiquantum well λ/4 shifted DFB lasers”, IEEE Journal of quantum electronics, Vol. 27, pp. 1705-1713,1991.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top