跳到主要內容

臺灣博碩士論文加值系統

(44.220.251.236) 您好!臺灣時間:2024/10/11 05:09
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:林政翰
研究生(外文):Lin Chen Han
論文名稱:奈米鐵修飾聚砒硌和氧化錳電極電容器特性
論文名稱(外文):Iron-nanoparticles modify the capacitor character of poly pyrrole and manganese oxide electrodes
指導教授:白育綸楊木火
學位類別:碩士
校院名稱:高苑科技大學
系所名稱:高分子環保材料研究所
學門:工程學門
學類:化學工程學類
論文種類:學術論文
論文出版年:2006
畢業學年度:94
語文別:中文
中文關鍵詞:奈米鐵聚砒硌氧化錳
外文關鍵詞:nano particlepyrrolemanganese
相關次數:
  • 被引用被引用:0
  • 點閱點閱:214
  • 評分評分:
  • 下載下載:44
  • 收藏至我的研究室書目清單書目收藏:0
中文摘要
本研究探討摻雜奈米鐵溶膠對聚砒硌膜電極與錳水合氧化物的影響,主要是針對電極的可逆性、穩定性與電容量做研究,再利用SEM、EDS、Mapping與XRD做材料分析並探討奈米鐵溶膠對導電性高分子與金屬氧化物之影響。
首先就電極之成長圈數、掃描速率與奈米鐵溶膠濃度等製備條件做探討:以循環伏安法電聚合摻雜奈米鐵溶膠之聚砒硌膜電極其較佳條件為以掃描速率20mV/s並循環成長100圈、再摻雜濃度為UV吸光度值1.0之奈米鐵溶膠,可改善聚砒硌膜電極之電容量至383.33 F/g。
以循環伏安法沉積錳水合氧化物其較佳條件為以掃描速率20mV/s並循環成長30圈,再摻雜濃度為UV吸光度值為0.2奈米鐵溶膠可改善錳水合氧化物之電容量至413.26 F/g。經由電化學測試證實摻雜奈米鐵溶膠可以有效改善聚砒硌膜與錳水合氧化物的可逆性與充放電的穩定性並可以延緩電極老化 。
就電極的表面做材料分析:利用電子顯微鏡分析電極之表面型貌,可以發現摻雜奈米鐵溶膠可以有效改善聚砒硌膜與錳水合氧化物的表面型貌並增加其平整度。
利用X光繞射儀探討奈米鐵溶膠的結晶型態則可得知,在聚砒硌膜電極中奈米鐵是以FeO(OH)的結晶型態存在,而在錳水合氧化物中並沒有結晶型態存在,不過石墨基材的繞射峰卻會隨著奈米鐵溶膠濃度的增加而有衰退的情形產生。
經由循環伏安法測試可以了解摻雜奈米鐵溶膠的確可以有效改善導電性高分子與金屬氧化物的電容量與電化學特性,而在材料分析方面經由SEM與XRD做電極表面結構分析則可以了解摻雜奈米鐵溶膠則可以改善電極表面平整度,且在聚砒硌膜電極中奈米鐵是以FeO(OH)結晶型態存在, 錳水合氧化物表面無法偵測鐵或錳的結晶型存在,但奈米鐵的量與氧化錳的沈積速度成正比,所以經由上述結果了解摻雜奈米鐵溶膠是可以做為穩定的摻合劑並可以提高有機化合物和無機金屬在循環伏安法下製備的電容量。
英文摘要
The research indicated about uses iron nano-particle sol to change the capacitor characters of poly pyrrole film and hydrous manganese oxide. Both the poly pyrrole film and the hydrous manganese oxide,s capacitors was examined reversibility, agening behavior and capacitance value. The purpose of this work finds better preparation conditions to plate poly pyrrole and hydrous manganese oxide.
This work uses cycle voltammetry to prepare electrode of poly pyrrole film. When poly pyrrole with iron nano-particle can promote capacitance value from as 351.61F/g, with the btter preparation condition is scan cycle number of 100 cycle numbers, the scan rate is 20mV/s, and the UV value of iron nano-particle at UV value is 1. Moreover, the hydrous manganese oxide with iron nano-particle can promote the best capacitance value as 413.26 F/g, and the better condition is scan cycle number of 30 cycle numbers, the scan rate is 20mV/s, and the UV value of iron nano-particle at UV value is 0.2.
In addition, the poly pyrrole and hydrous manganese oxide with iron nano-particle can improve reversibility and duability of these two kinds of electrodes. In the SEM results, we observe the morphology of poly pyrrole film and hydrous manganese oxide were smooth and with using the iron nanoparticles sol. Those smooth surfaces of the poly pyrrole film and hydrous manganese oxide can proof that the high capacitor value was contributed by active sites form the XRD results, the iron nano-particle,s was examined as the FeO(OH) crystal in the poly pyrrole electrode, but we can’t find any metal crystal in the hydrous manganese oxide. The intensity of the graphite diffraction peak is decreased with the increase of the concentration iron nano-particle. The decrease of graphite depicts that the deposition rate of hydrous manganese oxide is increased by using the iron nano-particle.
目錄
頁數
中文摘要…………………………………………………………………….I
英文摘要……………………………………………………………………III
目錄………………………………………………………………………….V
表目錄………………………………………………………………………IX
圖目錄………………………………………………………………………XI
第一章 序論
1-1. 電化學原理……………………………………………………….1
1-2. 導電性高分子…………………………………………………….4
1-2-1.簡介……………………………………………………………..4
1-2-2.聚砒硌的成核現象……………………………………………..7
1-2-3.導電性高分子之特性與應用…………………………………..7
1-2-4.聚砒硌的結構與電化學行為………………………………….10
1-3. 電化學聚合……………………………………………………….11
1-3-1.導電性高分子聚合……………………………………………11
1-4. 金屬氧化物電極種類與製備方法………………………………..12
1-5. 電化學電容器特性………………………………………………..16
1-6. 影響電化學電容器特性的因素…………………………………..19
1-7. 磁性奈米材料介紹..........................................................................27
1-7-1.奈米科技簡介...............................................................................27
1-7-2.磁性奈米材料...............................................................................27
1-7-3.磁性奈米材料之製備...................................................................27
1-8. 研究動機...........................................................................................29
第二章 實驗方法及步驟……………………………………………………30
2-1. 石墨基材配製………………………………………………………30
2-2. 奈米鐵溶膠配製流程………………………………………………31
2-3. 藥品與裝置…………………………………………………………32
2-4. 奈米鐵溶膠之UV吸光度測定程序………………………………..32
2-5. 電聚合製備聚砒硌與沉積錳系水合氧化物實驗程序…………….33
2-6. 砒硌與錳系水合氧化物電化學分析實驗………………………….35
2-6-1.循環伏安實驗…………………………………………………….35
2-6-2.充放電實驗……………………………………………………….35
2-6-3.可逆性實驗……………………………………………………….36
2-6-4.穩定性實驗……………………………………………………….36
2-7. 材料分析…………………………………………………………….36
第三章 電化學製備聚砒硌膜之電化學研究………………………………...38
3-1. 循環伏安法製備聚砒硌膜………………………………………….38
3-1-1.成長行為………………………………………………………...38
3-1-2.電容特性測試…………………………………………………...47
3-2. 電化學測試………………………………………………………….54
3-2-1.可逆性實驗……………………………………………………...54
3-2-2.穩定性的測試…………………………………………………...60
3-2-3.準電容評估……………………………………………………...64
3-3. 材料特性分析………………………………………………………..69
3-3-1.表面型態………………………………………………………...69
3-3-2.表面成分分析…………………………………………………...79
3-3-3.X光繞射鑑定奈米鐵結晶型態………………………………...79
3-4. 結論………………………………………………………………….81
第四章 電化學製備錳氧化物之電化學研究………………………………...82
4-1. 循環伏安法製備錳氧化物………………………………………….82
4-1-1.奈米鐵溶膠濃度對電極的影響………………………………….82
4-1-2.成長圈數對電極的影響………………………………………….86
4-2. 準電容評估………………………………………………………….90
4-3. 電化學測試……………………………………………………….…93
4-3-1.可逆性與穩定性………………………………………………….93
4-4. 材料分析……………………………………………………………98
4-4-1.表面型態分析…………………………………………………...98
4-4-2.面成份分析…………………………………………………….105
4-4-3.X光繞射鑑定奈米鐵結晶結構……………………………….110
4-5. 總結………………………………………………………………..112
第五章 總結與展望…………………………………………………………113


表目錄
Table.1-1.Physical properties of selected electrochemically synthesized polymers……………………………………………………………..18
Table.1-2.The iron-magnetism material’s property..............................................28
Table.3-1.The relationship between cycle voltammetry numbers and anodic current peak position………………………………………………...52
Table.3-2.The relationship between cycle voltammetry scan rate and anodic current peak position………………………………………………...53
Table.3-3.The specific capacitance values of polypyrrole film was polymerized (a) polypyrrole 4℃ (paper review) (b) polypyrrole 40 ℃ (paper review) (c) polypyrrole (experiment data) and (d) polypyrrole with iron- nanoparticle (experiment data)………………………………..66
Table.3-4.The specific capacitance values of pyrrole with iron-nanoparticle (UV=0.2) was polymerized (a) 50cycle (b) 75cycle (c) 100cycle (d) 125cycle…………………………………………………………….67
Table.3-5.The specific capacitance values of polypyrrole with iron-nanoparticle (UV=0.2) was polymerized (a) 20mV/s (b) 50mV/s (c) 80mV/s…..67
Table.3-6.The specific capacitance values of polypyrrole with iron- nanoparticle (UV=0.2) was polymerized (a) UV=0.2, (b) UV=0.6, (c) UV=1.0, (d) UV=1.4 as well as (e) iron-nanoparticle UV = 1.0 in 0.3M polypyrrole
………………………………………………………………………67
Table.3-7.The component of the PPy grown from the solutions containing 0.1 M KCl + 0.1M pyrrole + iron-nanoparticle (UV=0.2) with sacn rate of (a) 20 and (b)50 mV/s……………………………………………...77
Table.3-8.The component of the PPy grown from 0.1M KCl + 0.1M pyrrole +
iron-nanoparticle with concentration of (a)UV=0.6, (b)UV=1.0 and
(c) UV=1.4…………………………………………………………78
Table.4-1.The specific capacitance values of Mn-oxide was polymerized at iron-nanoparticle concentration of (a) UV=0.2 (b) UV=0.6 (c) UV=1.0 (d) UV=1.4………………………………………………...90
Table.4-2.The specific capacitance values of Mn-oxides were polymerized with
Iron-nanoparticle with different prepration cycle number…………..91
Table.4-3.The specific capacitance values of MnSO4 with iron-nanoparticle
(UV=0.2) and pure MnSO4 film……………………………………..91
Table.4-4.The component of the Mn-oxide grown from the solutions containing
0.1M MnSO4.nH2O with iron-nanoparticle concentration of (a) UV = 0.2…………………………………………………………………..105
Table.4-4.The component of the Mn-oxide grown from the solutions containing
0.1M MnSO4.nH2O with iron-nanoparticle concentration of (b) UV =0.6 and (c) UV=1.0………………………………………………..106
Table.4-5.The component of the Mn-oxide grown from the solutions containing 0.4 M MnSO4.nH2O with iron-nanoparticle (UV= 0.2)…………..107

圖目錄
Fig.1-1.Variable affecting the rate of an electrode reaction…………………….3
Fig.1-2.Mechanisms of electron transfer reaction………………………………5
Fig.1-3.Three electrode cell……………………………………………………..6
Fig.1-4.Polypyrrole structure……………………………………………………6
Fig.1-5.The diagram of nucleation process:(a)instantaneous and (b)progressive
…………………………………………………………………………..9
Fig.1-6.Two different structure of the polypyrrole……………………………..10
Fig.1-7.Voltammogram of the Pt electrode modified by Polypyrrole film in an
HCl/NaCl pH = 4.5 aqueous solution showing the entire color range obtainted during the oxidation process scan rate:50mV/s……………...11
Fig.1-8.The capacitor value diagram…………………………………………...21
Fig.1-9.Potential step experiment for RC circuit……………………………….23
Fig.1-10.Current step experiment for RC circuit……………………………….23
Fig.1-11.E-t behavior resulting from current step experiment…………………25
Fig.1-12.i-E plots from a cyclic linear potential sweep applied to an Rc circuit
………………………………………………………………………...25
Fig.1-13.The i-E plots from a linena cyclic potential sweep…………………...26
Fig.1-14.The different magnetism material’s magnetism degree………………28
Fig.2-1.The schematic diagram of an electrochemical measurement………….34
Fig.3-1.The ppy electrode was prepared from -600~800 mV in 0.1M KCl +0.1M pyrrole ( ) and 0.1M KCl + 0.1M pyrrole + iron nano-particles (UV=0.2) ( ) at 4℃ during the (a) 1st and (b) 2nd cycle Voltammetry numbers…………………………………………41
Fig.3-2.The ppy electrode was prepared from -600~800 mV in (a) 0.1M KCl + 0.1M pyrrole (b) 0.1M KCl + 0.1M pyrrole + iron-nanoparticles (UV=0.2) at 4℃ by cycle Voltammetry……………………………..42
Fig.3-3.The ppy electrode was prepared by 0.1M KCl + 0.1M Pyrrole+ iron nano-particle (UV=0.2) from -600~800mV at4℃ with cycle number (a)10 (b)50 (c)75 (d) 100 (e)125 ……………………………………………………..43
Fig.3-4.The ppy electrode was prepared with scan rate of (a) 20mV/s………..43
Fig.3-4.The ppy electrode was prepared with scan rate of (b) 50mV/s and (c) 80mV/s in 0.1M KCl + 0.1M pyrrole + ironnano - particle (UV=0.2) at 4℃……………………………………………………………………...44
Fig.3-5.The ppy electrode was prepared with iron-nanoparticle concentration of (a) UV=0.2 (b) UV=0.6 from -600~800mV by cycle Voltammetry at 4℃……………………………………………………………………...45
Fig.3-5.The ppy electrode was prepared with iron-nanoparticle concentration of (c) UV=1.0 and (d) UV=1.4 from -600~800mV by cycle Voltammetry at 4℃………………………………………………………………… ..46
Fig.3-6.The ppy electrode was prepared with pyrrole concentration of (a)0.1M ppy ( ) and (b) 0.3M ppy ( ) in a 0.1M KCl + iron-nanoparticle (UV=1.0)………………………………………….47
Fig.3-7.Electrochemical behavior of a pure pyrrole Films( )and pyrrole with iron nano-particle( )at 20mV/s in a 0.1M KCl…………………….51
Fig.3-8.Cycle voltammetry behavior of a polypyrrole films at 20 mV/s in a 0.1M KCl : 0.1M KCl + 0.1M pyrrole + iron-nanoparticle (UV=0.2)……….51
Fig.3-9.Cycle voltammetry behavior of a pyrrole with iron - nanoparticle (UV=0.2) was prepard in different scan rate and examined in 0.1M KCl
………………………………………………………………………….52
Fig.3-10.Cycle voltammetry behavior of a pyrrole with iron- nanoparticle with 20 mV/s in 0.1M KCl………………………………………………..53
Fig.3-11.Cycle voltammetry behavior of a pyrrole with iron nano- particle(UV=1.0)with 20mV/s in 1M NaNO3……………………………..54
Fig.3-12.The reversibility of (a) pyrrole with iron nano-particle (UV=1.0) and (b) pure pyrrole with 20mV/s in 0.1M KCl was examined at 4℃ by cycle voltammetry from -600 ~ 650mV…………………………………...57
Fig.3-13.The reversibility of the pyrrole with iron-particle (UV=1.0) at 20mV/s in 0.1M KCl at 4℃ by cycle voltammetry from –600 ~800mV…….58
Fig.3-14.The reversibility of (a)pyrrole with iron-particle (UV=1.0)………….58
Fig.3-14.The reversibility of (b) pure pyrrole with 20mV/s in 0.1M KCl at 4℃ by cycle voltammetry from -600~800mV…………………………...59
Fig.3-15.The reversibility of the pyrrole with iron nano-particle(UV=1.0)films with 20mV/s in 1M NaNO3 at 4℃ by cycle voltammetry from -600~800mV.………………………………………………………...59
Fig.3-16.The ageing behavior of the polypyrrole with iron nano- particle(UV=1.0)after 80 cycles with 20mV/s in 0.1M KCl at 4℃………63
Fig.3-17.The ageing behavior of the polypyrrole after 80 cycles with 20mV/s in 0.1M KCl at 4℃……………………………………………………..63
Fig.3-18.The ageing behavior of the polypyrrole with iron nano-particle(UV=1.0)films after 80 cycles at 20mV/s in 1M NaNO3 at 4℃……64
Fig.3-19.The Charge-discharge behavior of pyrrole with iron-nanoparticle (UV=1.0) typical results measured from -300~400mV in 0.1M KCl at 1mA cm-2……………………………………………………………….68
Fig.3-20.Voltammetric charge integrated from the negative sweeps of polypyrrole films polymerized in (○) 0.1M KCl + 0.1M pyrrole + iron-nanoparticle (UV=0.2~1.4)……………………………………68
Fig.3-21.SEM photographs of the PPy films grown from the solutions containing 0.1M KCl + 0.1M pyrrole (a) 1000 (b) 3000 (c) 5000 times,and 0.1M KCl + 0.1M pyrrole + iron-nanoparticle (UV=0.2) (d) 1000 (e) 3000 (f) 5000 times………………………………………..72
Fig.3-22.SEM photographs of the PPy films grown from the solutions containing 0.1M KCl, 0.1M pyrrole and iron-nanoparticle (UV=0.2) at 20mV/s(a) 1000 (b) 3000 (c)5000 times ; 50mV/s (d) 1000 (e) 3000 (f) 5000 times
………………………………………………………………………73
Fig.3-22.SEM photographs of the PPy films grown from the solutions containing 0.1M KCl,0.1M pyrrole and iron-nanoparticle (UV=0.2) at 80mV/s (g) 1000 (h) 3000 (i) 5000 times…………………………...74
Fig.3-23.SEM photographs of the PPy films grown from the solutions containing 0.1M KCl and 0.1M pyrrole in iron- nanoparticle UV=0.2 (a) 1000 (b) 3000 (c) 5000 times ; in iron- nanoparticle UV=0.6 (d) 1000 (e) 3000 (f) 5000 times……………………………………………………….75
Fig.3-23.SEM photographs of the PPy films grown from the solutions containing 0.1 M KCl and 0.1M pyrrole in iron-nanoparticle UV=1.0 (g) 1000 (h) 3000 (i) 5000 times;in iron-nanoparticle UV=1.4 (j)1000 (k) 3000 (l) 5000 times………………………………………………76
Fig.3-24.X-ray diffraction spectra of (a) pure pyrrole (b) pyrrole with iron -nanoparticle (UV=0.2) (c) pyrrole with iron-nanoparticle (UV=1.0)
……………………………………………………………………….80
Fig.4-1.(a) 0.1M MnO.nH2O and (b) 0.1M MnO.nH2O with iron- nanoparticle
(UV=0.2) were prepared from - 0.6~1.2V at 25℃ by cycle voltammetry
………………………………………………………………………….84
Fig.4-2.The cycle voltametry behavior of (a) 1st and (b) 2nd numbers in two kinds of plating solutions………………………………………………85
Fig.4-3.Cycle voltammetry behavior of MnSO4 with different iron-nanoparticle concentration at 20mV/s in 0.1M Na2SO4…………………………….88
Fig.4-4.Cycle voltammetry behavior of MnSO4 with iron-nanoparticle at
20mV/s in 0.1M Na2SO4 with different preparation cycle numbers….88
Fig.4-5.0.4M MnO4.nH2O with iron-nanoparticle (UV=0.2) was prepared from-0.6~0.12V at 25℃ by cycle voltammetry………………………89
Fig.4-6.Cycle voltammetry behavior of 0.4M MnSO4 with iron-
nanoparticl ( )and 0.4M MnSO4 ( )at 20mV/s in 0.1M Na2SO4 ..89
Fig.4-7.Voltammetric charge integrated of MnSO4.nH2O was polymerized in 0.1M MnSO4.nH2O with iron-nanoparticle (UV=0.2) with different preparation cycle numbers………………………………………….92
Fig.4-8.The reversibility of the 0.1M MnSO4 with iron-nanoparticle (UV=0.2) was prepared from 0~800mV at 20mV/s in Na2SO4 and 25℃ by cycle voltammetry………………………………………………………...96
Fig.4-9.The ageing behavior of the Mn-oxide with iron-nanoparticle (UV=0.2) after 80 cycles at 20mV/s in 0.1M Na2SO4 at 25℃………………...96
Fig.4-10.The charge-discharge behavior of pyrrole with iron- nanoparticle (UV=1.0) was measured from -300~400 mV in 0.1M NaSO4 with 2.5mA cm-2…………………………………………………………97
Fig.4-11.The reversibility of 0.4M MnSO4 with iron-nanoparticle (UV=0.2) was examined from 0~800 mV at 20mV/s in Na2SO4 at 25℃ by cycle voltammetry………………………………………………………..97
Fig.4-12.The ageing behavior of 0.4M MnSO4 with iron-nanoparticle (UV=0.2) after 80 cycles 20mV/s in 0.4M Na2SO4 at 25℃…………………..98
Fig.4-13.SEM photographs of Mn-oxide films were grown from the solutions containing 0.1M MnSO4.nH2O with 20mV/s (a,b,c),0.1M MnSO4.nH2O with iron-nanoparticle(UV=0.2)(d,e,f)………………………..100
Fig.4-14.SEM photographs of Mn-oxide films were grown from the solutions containing 0.1 M MnSO4.nH2O, 0.1M pyrrole with iron-nanoparticle concentration of UV=0.6 (a) 1000 (b) 3000 and (c) 5000 times; UV=1.0 (d) 1000 (e) 3000 and (f) 5000 times……………………..101
Fig.4-14.SEM photographs of Mn-oxide films were grown from the solutions containing 0.1 M MnSO4.nH2O, 0.1M pyrrole with iron-nanoparticle concentration of UV=1.4 (g) 1000 (h) 3000 and (i) 5000 times………………………………………………………………..102
Fig.4-15.SEM photographs of the Mn-oxide with iron-nanoparticle (UV=0.2) grown from the solutions containing 0.1M MnSO4.nH2O with 20mV/s at cycles numbers of 50 cycles (a) 1000 (b) 3000 and (c) 5000 times; 30 cycles (d) 1000 (e) 3000 and (f) 5000 times ……………………103
Fig.4-16.SEM photographs of the Mn-oxide grown from the solutions containing 0.4M MnSO4.nH2O (a)1000 (b) 3000 and (c) 5000 times; and 0.4M MnSO4.nH2O with iron-nanoparticle (UV=0.2)(d) 1000 (e) 3000 and (f) 5000 times…………………………………………….104
Fig.4-17.The mapping result of Mn-oxide with iron-nanoparticle film UV=0.2 to UV=1.0……………………………………………………………..109
Fig.4-18.X-ray diffraction spectra of (a) carbon (b) MnSO4 (0.1M) with iron-nanoparticle (UV=1.0) (c) 0.1M MnSO4 with iron-nanoparticle (UV=0.2) and (d) 0.4M MnSO4 with iron-nanoparticle (UV=0.2)...111
參考文獻
1.Bard, A. J. and Faulkner, Larry R., “Electrochemical Method,”Willey, ,pp. 16 (1980).
2.胡啟章,「電化學原理與方法」,五南出版社,第2頁。
3.Lai, E. K. W., Beattie, P. D., Orifino, F. P., Simon, E. Holdcroft, S.,“Electrochemical oxygen reduction at composite films of Nafion, polyaline and Pt,”Electrochim, Vol. 44, pp. 2559-2569 (1999).
4.Giacomini, M. T., de Souza, L. M. M., Ticianelli, E. A., Surface Science, Vol. 409, pp. 465-473 (1998).
5.Bard, K. Tsakova, V., and Schultze, J. W., Electrochim, Vol. 37, pp. 2255( 1992).
6.Dian, G., Merlet, N., Barbey, G., Outurquin, F., and Paulmier, C. J., Electroanal, Vol. 238, pp. 225 (1987).
7.Marcus, M. L., Rodringuez, I., and Gonzalez-Velsco J., Electrochim, Vol. 32, pp. 1453 (1987).
8.Hwang, B. J., Santhanam, R., and Lin Y-L, J. Electrochem, Vol. 147, pp. 2252-2257 (2000).
9.Maeda, S., Carins, D. B., Armes, S. P., “New reactive polyelectrolyte stabilizers for polyaniline colloids,” Eur. Polym, Vol. 3, pp. 245- 253 (1997).
10.Diaz, A. F., Bargon, J., in : Skotheim, T. A. (Ed.), Handook of Conducting polymer, Marcel Dekker, New York, pp. 81 (1980).
11.Noufi, R., Electrochem Vol. 130 pp. 2126(1984).
12.Hanilin, Ge., and Yucheng, Lin., Characterization of a chemoresistor pH sensor based on conducting polyrrole, Sensors and Actuatores Vol. 21, pp. 57-63 (1994).
13.Li, B. F., and Albery, W. J., Chem, J. Electroanal, Vol. 302, pp. 271 (1991).
14.Trinidad, F., Alonso-Lopez, J.,and Nebot, M., J. Appl. Electrochem., Vol. 17, pp. 215 (1987).
15.Depmzoier, A. and Moutet, J., Chem, Acc., Vol. 22, pp. 249 (1989).
16.Giacomini, M. T., de Souza, L.M.M., Ticianelli, E. A., Surface Science, Vol. 409, pp.465-473 (1998).
17.Linford, R. G., Elsevier Science,New York, pp.90-100 (1990).
18.Nicholson, R. S. and Shain, I., Chem, Anal., Vol. 36, pp.706-723 (1964).
19.Liang, W., Lei, J. and Martin, C. R., Synthetic Metals, Vol. 52,pp. 227-239 (1992).
20.Street, G. B., Clarke, T. C., Krounbi, M., Kanazawa, K. K., Lee, V., Pfluger, P., Scott, J. C. and Weiser, G., Mol. Cryst. Lig. Cryst., Vol. 83,pp. 1285-1296 (1982).
21.Fradette, B. N., and Beaudoin, G., J. Electrochem, Vol. 139, pp.1889 (1992).
22.Nanni, L., Polizzi, S., Benedetti, A., and Battisti, A.D., “Morphology, Microstructure, and Electrocatalytic Properties of RuO2-SnO2 Thin Films” J. Electrochem, Vol. 146, pp. 220-225 (1999).
23.Mozota, J. and Conway, B. E., “Surface and Bulk Processes at Oxidized Iridium Electrodes−I. Monolayer Stage and Transition to Reversible Multilayer Oxide Film Behavior” Electrochim, Vol. 28, pp. 1 (1983).
24.Mozota, J. and Conway, B. E., “Surface and Bulk Processes at Oxidized Iridium Electrodes −II. Monolayer Stage and Transition to Reversible Multilayer Oxide Film Behavior” Electrochim, Vol. 28, pp. 9 (1983).
25.Liu, K.-K. and Anderson, M. A., “Porous Nickel Oxide/Nickel Films for Electrochemical Capacitors”, J. Electrochem, Vol. 143, pp. 124 (1996).
26.Srinivasan, V. and Weidner, J. W., “Studies on the Capacitance of Nickel Oxide Films: Effect of Heating Temperature and Electrolyte Concentration,” J. Electrochem, Vol. 147, pp. 880 (2000).
27.Srinivasan, V. and Weidner, J. W., “An Electrochemical Route for Making Porus Nickel Oxide Electrochemical Capacitors,” J. Electrochem,Vol. 144, pp. L210 (1997).
28.Lin, C., Ritter, J. A., and Popov, B. N., “Characterization of Sol-Gel-Derived Cobalt Oxide Xerogels as Electrochemical Capacitors,” J. Electrochem, Vol. 145, pp. 4097 (1998).
29.Liu, T.-C., Pell, W. G., Conway, B. E., “Stages in the Development of Thick Cobalt Oxide Films Exhibiting Reversible Redox Behavior and Pseudocapacitance,” Electrochim, Vol. 44, pp. 2829 (1999).
30.Lee, H. Y. and Goodenough, J. B., “Ideal Supercapacitor Behavior of Amorphous V2O5•nH2O in Potassium Chloride (KCl) Aqueous Solution,” J. Solid State Chem., Vol. 148, pp. 81 (1999).
31.Pourbaix, M., “Atlas of Electrochemical Equilibria in Aqueous Solutions”, National Association of Corrosion Engineers, Houstion, Texas, USA (1966).
32.Messaoudi, B., Joiret, S., Keddam, M. and Takenouti, H., “Anodic behaviour of manganese in alkaline medium,” Electrochim. Vol. 46, pp. 2487 (2001).
33.Pang, S.-C., Anderson, M. A., and Chapman, T. W., “Novel Electrode Materials for Electrochemical Properties of Sol-Gel-Derived and Electrodeposited Manganese Dioxide,” J. Electrochem. Vol. 147, pp. 444 (2000).
34.Lee, Ha Y., Kim, S. W., and Lee, Hee Y., “Expansion of Active Site Area and Improvement of Kinetic Reversibility in Electrochemical Pseudocapacitor Electrode,” Electrochemical and Solid-State Letters,Vol 4, pp. A19-A22 (2001).
35.黃耀煌,「循環伏安法製備之含水釕氧化物於電化學電容器的應用」,碩士論文,中正大學化工所,嘉義 (1999)。
36.Hu, Chi-Chang and Tsou, Tar-Wan, “Ideally Capacitive Behavior of Hydrous Manganese Oxide Prepared by Anodic Deposition,” Electrochem, Vol. 4, pp. 105-109 (2002).
37.Zheng, J. P. and T jow, R., “A New Charge Strage Mechanism for Electrochemical Capacitors,” J. Electrochem, Vol. 142, pp. L6-L8 (1995).
38.Boodts, J. C. F., Trasatti, S., “Hydrogen evolution on iridium oxide cathodes,” J. Applied Electrochem, Vol. 125, pp. 255-262 (1989).
39.Hadzi-Jordanov, S., Angerstein-Kozlowska, H., Vukovic, M. and Conway, B. E., “Reversibility and Growth Behavior of Surface Oxide Films at Ruthenium Electrode,” J, Electrochem. Vol. 125, pp. 1471-1480 (1978).
40.Lin, Chuan, Ritter, James A., and Popov, Branko N., “Development of Carbon-Metal Oxide Supercapacitors from Sol-Gel Derived Carbon- Ruthenium Xerogels,” Journal of The Electrochimical Society, Vol. 146(9), pp.3155-3160 (1999).
41.江鴻儒,「循環伏安法及電鍍法制備釕電極在電化學電容器之應用」,碩士論文,中正大學化工所,嘉義 (2001)。
42.Simpraga, R. P. and Conway, B. E., “The real-are scaling factor in electrocatalysis and in charge storage by supercapacitors,” Electrochim. Vol. 43, pp. 3045-3058 (1998).
43.Simpraga, R. P. and Conway, B. E., “The real-are scaling factor in electrocatalysis and in charge storage by supercapacitors,” Electrochim, Vol. 43, pp. 3045-3058 (1998).
44.Marracino, J. M., Coeuret, F. and Langlois, S., “A first Investigation of Flow-Through Porous Electrodes Made of Metallic Felts or Foams,” Electrochim, Vol. 32, pp. 1303-1309 (1987).
45.「儀器總攬 材料分析儀器」,行政院國科會精密儀器發展中心出版,pp. 22,41 (1997)。
46.陳佩紋,「利用Fe3O4磁性顆粒處理化學機械研磨廢水」,碩士論文, 中央大學化工所,中壢 (2004)。
47.黃忠良著,「磁性流體理論應用」,復漢出版社(1988)。
48.陳澄佑,「磁性流體的研製」,碩士論文,清華大學材料科學與工程研究所,新竹 (1993)。
49.林錫勳,「電化學製備聚砒硌膜之電化學與材料特性的研究」,碩士論文,中正大學化工所,嘉義 (2001)。
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top