跳到主要內容

臺灣博碩士論文加值系統

(44.220.251.236) 您好!臺灣時間:2024/10/09 07:46
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:洪惠肚
研究生(外文):Hung Huei-Du
論文名稱:奈米粉體氧化鈰與蜂巢狀奈米氧化鈰觸媒應用於觸媒焚化處理芳香族碳氫化合物之研究
論文名稱(外文):Catalytic incineration of aromatic hydrocarbons over nano powder cerium oxide and monolithic catalyst coated with nano cerium oxide
指導教授:王清輝
指導教授(外文):Wang Ching-Huei
學位類別:碩士
校院名稱:高苑科技大學
系所名稱:高分子環保材料研究所
學門:工程學門
學類:化學工程學類
論文種類:學術論文
論文出版年:2006
畢業學年度:94
語文別:中文
中文關鍵詞:碳氫化合物芳香族反應器級粉體蜂巢狀
外文關鍵詞:Catalytic
相關次數:
  • 被引用被引用:2
  • 點閱點閱:276
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本論文主要是研究以奈米氧化鈰觸媒用於觸媒焚化處理芳香族碳氫化合物。首先我們測試七種金屬氧化觸媒於觸媒焚化處理芳香族碳氫化合物之效能評估,結果發現七種不同金屬氧化物觸媒中,以CeO2具最佳活性。使用CeO2在240℃就能完全氧化甲苯,至於二甲苯亦有相似的結果,而苯則為最難處理。接著評估四種不同奈米級粉體CeO2之製備方法;發現活性最好的觸媒製備方式為H2O2的氧化還原反應(以CeO2-A表示)。CeO2-A具有最佳活性之原因為,產生較小的結晶顆粒和較大BET比表面積。由O2-TPD和甲苯-TPD證明奈米級粉體CeO2-A觸媒能夠吸附較多的甲苯和氧分子,因此觸媒具有較佳的活性。評估奈米級粉體CeO2-A觸媒於不同煅燒溫度的結果發現,觸媒於500℃煅燒具最佳活性。反應時,較高的重量小時空間流速(WHSV)及較高的甲苯濃度為了達100%甲苯轉化率必需要有較高的反應溫度。
將活性最好的奈米級粉體CeO2觸媒披覆於蜂巢狀陶瓷擔體上,再以含浸法在其上乘載活性物質之前驅體製備成各種不同的觸媒,並以微分反應器來測定觸媒對甲苯氧化的活性,並從中篩選最佳之觸媒做為後續研究之用。實驗結果顯示,含浸於CeO2蜂巢狀陶瓷擔體觸媒上活性物質的種類、含量、製備煅燒溫度,都會影響蜂巢狀陶瓷擔體觸媒的性能。活性測試結果顯示,以H2O2氧化還原反應披覆CeO2於蜂巢狀陶瓷作為擔體,再以含浸法乘載鈀含量為0.3 wt%之觸媒的活性最佳。最後針對PdO/CeO2蜂巢狀陶瓷擔體觸媒做活性測試及穩定性測試。結果證明蜂巢狀觸媒用於觸媒焚化處理芳香族碳氫化合物具有應用的潛力。
In this study, the performance of nanosized CeO2 used as catalysts for the catalytic incineration of aromatic hydrocarbons was investigated. We tested the efficacy of seven metal oxide catalysts in the catalytic incineration of aromatic hydrocarbons and found CeO2 to be the most active of the seven. With the use of CeO2, complete oxidation of toluene was achieved at 240 ℃. There was a similar outcome in the incineration of p-xylene, whereas benzene was more refractory. In preparation of the CeO2 catalyst, four different methods were evaluated; a redox reaction in hydrogen peroxide was found to produce the most active catalyst. This is because CeO2 prepared using this method (designated as CeO2-A) had the smallest crystallite size and the largest BET surface area, both characteristics that confer higher activity. O2-TPD and toluene-TPD also demonstrated the superior activity of the CeO2-A catalyst, as it was best able to adsorb both toluene and O2. The effect of calcination temperature was also assessed to find the optimal preparation conditions. CeO2 calcined at 500 ℃ was the most active catalyst; its higher activity can be attributed to its smallest crystallite size and hence largest surface area. In the reaction, a higher reaction temperature was necessary for 100% conversion of toluene at higher values of weight hourly space velocity (WHSV) and higher toluene concentrations.
For the catalytic incineration of aromatic hydrocarbons, nanosized CeO2 was coated to honeycomb support by redox reaction in hydrogen peroxide and the used as the support to prepare several kinds of supported metal-oxide catalysts by incipient wetness impregnation method. Then the activities of the honeycomb catalysts were evaluated by a fixed bed reactor. Experimental results indicate that active species of coating layer, calcination temperature are important factors affecting catalyst activity. The results of activity test indicate that coating a CeO2 layer with redox reaction in hydrogen peroxide coating method and loading 0.3 wt% palladium with incipient wetness impregnation method give the highest activity.
At the end of this study, the activities and stabilities of the powder catalyst and the monolithic catalyst were compared. The results show that monolithic catalyst has a better performance and hence has a potential for being applied to air pollution control.
總目錄
中文摘要------------------------------------------------------------------------------I
英文摘要------------------------------------------------------------------------------II
誌謝------------------------------------------------------------------------------------IV
總目錄------------------------------------------------------------------------------V
圖目錄----------------------------------------------------------------------------------VII
表目錄------------------------------------------------------------------------------IX

第一章 緒論----------------------------------------------------------------------------------1
1-1 前言-------------------------------------------------------------------------------1
1-2 研究動機及目的----------------------------------------------------------------2

第二章 文獻回顧----------------------------------------------------------------------------3
2-1 揮發性有機物之特性及處理-------------------------------------------------3
2-2 _ VOC觸媒焚化技術理論------------------------------------------------------8
2-3 影響觸媒催化焚化處理效率的因素---------------------------------------10
2-4 奈米觸媒------------------------------------------------------------------------18
2-5 氧化鈰的特性與應用---------------------------------------------------------20
2-6 奈米觸媒的應用---------------------------------------------------------------23

第三章 實驗--------------------------------------------------------------------------------25
3-1 奈米級粉體氧化鈰之製備-----------------------------------------------25
3-2 蜂巢狀擔體觸媒之製備------------------------------------------------------29
3-3 觸媒物性的鑑定---------------------------------------------------------------35
第四章 結果與討論-----------------------------------------------------------------------39
4-1 金屬氧化物觸媒的篩選-----------------------------------------------------39
4-2 篩選較佳奈米級粉體CeO2觸媒製法及對觸媒活性之影響--------39
4-3 煅燒溫度對觸媒活性的影響-----------------------------------------48
4-4 奈米級粉體CeO2觸媒穩定的評估---------------------------------48
4-5 反應條件對甲苯氧化反應的影響-----------------------------------48
4-6 不同芳香族碳氫化合物的氧化反應--------------------------------52
4-7 蜂巢狀奈米氧化鈰觸媒之特性鑑定--------------------------------56
4-8 奈米粉體CeO2與奈米CeO2披覆於蜂巢狀陶瓷擔體觸媒活性
比較-------------------------------------------------------------------56
4-9 不同CeO2披覆量對CeO2蜂巢狀陶瓷擔體觸媒活性的影響--60 4-10 不同煅燒溫度對CeO2蜂巢狀陶瓷擔體觸媒活性的影響------60
4-11 含浸不同金屬氧化物對CeO2蜂巢狀陶瓷擔體觸媒活性的影響---------------------------------------------------------------------------63
4-12 不同Pd含量對CeO2蜂巢狀陶瓷擔體觸媒活性的影響---------63
4-13 不同煅燒溫度對CeO2蜂巢狀陶瓷擔體觸媒及PdO/CeO2蜂巢狀陶瓷擔體觸媒活性的影響-----------------------------------------------------65
4-14_ PdO/CeO2蜂巢狀陶瓷擔體觸媒活性的穩定性測試---------------68
4-15 不同種類之芳香族化合物之活性測試-----------------------------68

第五章 結論與建議--------------------------------------------------------------------71
5-1 結論-------------------------------------------------------------------------------71
5-2 建議-------------------------------------------------------------------------------73

參考文獻-----------------------------------------------------------------------------74

圖目錄
圖2-1 氧化鈰之晶體結構------------------------------------------------------------21
圖3-1 H2O2氧化還原反應法製備奈米級粉體CeO2(CeO2-A)----------25
圖3-2 共沉澱法製備奈米級粉體CeO2(CeO2-B)---------------------------26
圖3-3 檸檬酸溶膠凝膠法製備奈米級粉體CeO2(CeO2-C)---------------27
圖3-4 PAA溶膠凝膠法製備奈米級粉體CeO2(CeO2-D)---------------- 28
圖3-5 奈米CeO2披覆於蜂巢狀陶瓷擔體之流程圖---------------------------30
圖3-6 CeO2蜂巢狀陶瓷擔體觸媒----------------------------------------------- 31
圖3-7 含浸不同金屬氧化物於CeO2蜂巢狀陶瓷擔體觸媒之流程圖------34
圖3-8 處理揮發性有機物的觸媒焚化處理裝置--------------------------------38
圖4-1 比較CeO2-A和三種商用觸媒的活性------------------------------------41
圖4-2 四種CeO2觸媒製備方法之XRD圖------------------------------------49
圖4-3 四種CeO2觸媒製備方法對甲苯氧化分解之轉化率------------------44
圖4-4 四種CeO2觸媒製備方法對甲苯進行TPD之圖譜------------------45
圖4-5 四種CeO2觸媒製備方法對氧氧進行TPD之圖譜-------------------46
圖4-6 四種CeO2觸媒製備方法對氫氣進行TPR之圖譜--------------------47
圖4-7 奈米級粉體CeO2-A不同煅燒溫度對甲苯氧化分解之轉化率的影響
----------------------------------------------------------------------------------49
圖4-8 奈米級粉體CeO2-A觸媒穩定性的比較--------------------------------51
圖4-9 不同重量小時空間流速對甲苯氧化分解轉化率的影響-------------53
圖4-10 奈米級粉體CeO2-A觸媒對不同甲苯濃度進行氧化分解之轉化率的影響---------------------------------------------------------------------------54
圖4-11 不同種類之芳香族化合物之活性測試---------------------------------55
圖4-12 未披覆CeO2於蜂巢狀陶瓷擔體上之SEM圖------------------------57
圖4-13 為奈米粉體CeO2觸媒披覆於蜂巢狀陶瓷擔體上之SEM圖-------57
圖4-14 奈米粉體CeO2披覆於蜂巢狀陶瓷擔體的SEM圖-------------------58
圖4-15 奈米粉體CeO2披覆於蜂巢狀陶瓷擔體的TEM圖-------------------58
圖4-16 奈米級粉體CeO2與奈米級CeO2披覆於蜂巢狀陶瓷擔體觸媒活性比較-------------------------------------------------------------------------------59
圖4-17 不同CeO2披覆量對CeO2蜂巢狀陶瓷擔體觸媒活性的影響-------61
圖4-18 不同煅燒溫度對CeO2蜂巢狀陶瓷擔體觸媒活性的影響------------62
圖4-19 含浸不同金屬氧化物對CeO2蜂巢狀陶瓷擔體觸媒活性的影響---64
圖4-20 不同煅燒溫度對CeO2蜂巢狀陶瓷擔體觸媒及PdO/CeO2蜂巢狀陶瓷擔體觸媒活性的影響----------------------------------------------------66
圖4-21 不同煅燒溫度對PdO/CeO2-蜂巢狀陶瓷擔體觸媒活性的影響----67
圖4-22 PdO/CeO2蜂巢狀陶瓷擔體觸媒活性的穩定性測試----------------69
圖4-23 不同種類之芳香族化合物之活性測試----------------------------------70

表目錄
表2-1 VOC的物化特性及毒理特性-----------------------------------------------4
表2-2 各種控制技術比較-------------------------------------------------------------9
表2-3 觸媒焚化在工業上的應用---------------------------------------------------11
表2-4 碳氫化合物的自燃點---------------------------------------------------------12
表2-5 以觸媒焚化法處理VOCs欲達90%轉化率所需溫度---------------14
表2-6 以觸媒焚化法去除VOCs時其容易程度之比較-----------------------16
表2-7 顆粒粒徑與表層原子所佔比例的關係------------------------------------19
表3-1 本研究用為測試金屬氧化物之金屬鹽類--------------------------------33
表4-1 不同金屬氧化觸媒的活性和BET比表面積----------------------------40
表4-2 不同奈米級CeO2製備方法的BET比表面積,半波峰寬(FWHM,
2θ=28.5o)和結晶顆粒大小--------------------------------------------42
表4-3 奈米級粉體CeO2-A不同煅燒溫度的半波峰寬(FWHM,2θ=28.5o)
和結晶顆粒大小---------------------------------------------------------------50
1.Edward, N. R.,and Leigh, A. C., “Select the Best VOC Control Strategy,” Chemical Engineering Progress., vol. 89, No. 7, pp. 28-35 (1993).
2.翁鴻山,「反應中的紅娘」,科學發展月刊,第370期,第6-11頁(2003)。
3.楊文毅,「鈀觸媒氧化焚化廢氣中有機物之研究」,碩士論文,國立中興大學環境工程學系,台中(2000)。
4.莊祖鯤,「有機廢氣處理方法綜合介紹」,有機廢氣觸媒焚化處理技術研討會,第36頁(2000)。
5.洪文雅,「揮發性有機廢氣處理處理技術簡介」,台灣環保產業雙月刊,第廿一期,第6-8頁,2003。
6.Van der Vaart, D. R., Vatavuk, W.M., and Wehe, A. H., “Thermal and catalytic incinerators for the control of VOCs,” J. Air Waste Manage. Assoc., vol. 41, No. 1, pp. 92-98 (1991).
7.Spivey, J. J., “Complete Catalytic Oxidation of Volatile Organics,” Ind. Eng. Chem. Res., vol. 26, No. 11, pp. 2165-2180 (1987).
8.Lyubovski, M., and Pfefferle, L., “Complete methane oxidation over Pd catalyst supported on α-alumina. Influence of temperature and oxygen pressure on the catalyst activity,” Catal. Today, vol. 47, No. 1-4, pp. 29-44 (1999).
9.Garbowski, E., Labalme, V., Benhamon, N., Guilhaume, N., Primet, M., “Modifications of Pt/alumina combustion catalysts by barium addition I. Properties of fresh catalysts,” Appl. Catal. A: Gen., vol. 133, No. 2, pp. 351 (1995).
10.Baldwin, T.R., and Burch, R., “Catalytic combustion of methane over supported palladium catalysts,” Appl. Catal. A: Gen., vol. 66, No. 2, pp. 337-358 (1990).
11.陳郁文、朱小容,「工業廢氣特殊處理技術」,化工資訊,第66頁(1992)。
12.楊昇府,「以Cu/Ce觸媒應用於氣相氨氧化及其反應動力之研究」,碩士論文,國立中山大學環境工程研究所,高雄 (2002)。
13.Jennings, M. S., Krohn, N. E., Berry, R. S., Palazzolo, M. A., Park, R. M., and Fidler, K. K., “Catalytic Incineration for control of Volatile Organic Compound Emissions,” Pollution Technology Rev., No. 121, pp. 251 (1985).
14.Chang, C. C., and Weng, H. S., “Deep Oxidation of Toluene on Perovskite Catalyst,” Ind. Eng. Chem. Res., vol. 32, No. 11, pp. 2930-2933 (1993).
15.Windawi, H., and Wyatt, M., “Catalytic Destruction of Halogenated Volatile Organic Compounds,” Platinum Metals Rev., vol. 37, No. 4, pp. 186-193 (1993).
16.林文川,臭味控制技術的介紹,台北國際環保暨能源展專刊─環保特刊,1996。
17.行政院環境保護署譯,「惡臭防制技術參考手冊( I )」,環保通訊雜誌社,56 (1988)。
18.江惠中,「有機廢氣處理方法綜合介紹」,有機廢氣觸媒焚化處理技術研討會,第59頁 (1989)。
19.Snape, T. H., Air Pollution Control and Design Handbook-catalytic Incineration, Macel Dekerd Inc., New york (1997).
20.Andersion, R. B., Stein, K. C., Feenan, J. J., and L. Hofer, J. E., “Catalytic Oxidation of Methane,” Ind. Eng. Chem., vol. 53, No. 10, pp. 809 (1961).
21.Hemsath, K. H., and Susey, P. E., “Fume Incineration Kinetic and Its Application,” Am. Inst. Chem. Engineers Symposium Series., vol. 137, pp. 70 (1974).
22.Ok, G., Hanai, Y., and Katou, T., “Decomposition of Chlorinated Dioxins, Odorous Compounds and Nox from MSW Incineration Plant by Oxidzing Catalyst,” Chemosphere, vol. 26, No. 12, pp. 2167 (1993).
23.Tichenor, B. A. and Palazzolo, M. A., “Destruction of Volatile Organic Compounds via Catalytic Incineration,” Environmental Progress., vol. 6, No. 3, pp. 172-176 (1987).
24.Papaefthimiou, P., Ioannides, T., and Verykios, X. E., ”Combustion of non-halgenated volatile organic compounds over group VIII metal catalysts,” Applied Catalysis B : Environmental, vol. 13, No. 3-4, pp. 175-184 (1997).
25.Rajesh, H., and Ozkan, U. S., “Complete oxidation of ethanol, acetaldehyde, and ethanol/methanol mixtures over copper oxide and copper-chromium oxide catalysts,” Ind. Eng. Chem. Res., vol. 32, No. 8, pp. 1622-1630 (1993).
26.Heyes, C. J., Irwin, J. G., Johnson, H. A., Moss, R. L., and Chem, J., “Catalytic Oxidation of Organic Air Polutions. Part 1. Single Metal Oxide Catalysts,” Techonl. Biotechnol., vol. 32, No. 12, pp. 1025-1033 (1982).
27.Tseng, T. K., and Chu, H., “The kinetics of catalytic incineration of styrene over a MnO/Fe2O3 catalyst,” Sci. Total Eviron., vol. 275, No. 1-3, pp. 83-93 (2001).
28.Spinicci, R., Tofanari, A., Faticanti, M., Pettiti, I., Porta, P., “Hexane total oxidation on LaMO3 (M = Mn, Co, Fe) perovskite-type oxides,” J. Mol. Catal. A: Chem., vol. 176, No. 1-2, pp. 247-252 (2001).
29.Wang, C. H., Lee, C. N., and Weng, H. S., “Effect of Acid Treatment on the Performance of the CuO-MoO3/Al2O3 Catalyst for Destructive Oxidation of (CH3)2S2,” Ind. Eng. Chem. Res., vol. 37, No. 5, pp. 1774-1780 (1998).
30.Wang, C. H., and Weng, H. S., “Characteristics of CuO/sulfated-Al2O3 and Its Catalytic Activity for Oxidative Decomposition of CH4 and (CH3)2S2,” J. Chin. I. Ch. E., vol. 29, No. 2, pp. 121-128 (1998).
31.Sunmers, J. C., and Heyeds, L. L., “Modes of Catalyst Decativation in stoichiometric automobile exhaust,” I&EC Product Research & Revelopment, vol. 18, pp. 318 (1979).
32.蔣孝澈、陳光龍,由鹽類溶液製作納米氧化物之簡介,化工,第四十六卷,第三期,第67頁(1999)。
33.陳郁文,「奈米小紅娘」,科學發展月刊,第370期,第34-39頁(2003)。
34.蘇品書編撰,超微粒子材料技術,復漢出版社,台南,1989。
35.莊萬發編撰,超微粒子理論應用,復漢出版社,台南,1995。
36.Mark, H. F., Othmer, D. F., Overberger, C. G., and Seaborg, G. T., Encyclopedia of Chemical Technology, John Wiley & Sons, New York (1970).
37.Galasso, F. S., Structure and Properties of Inorganic Solids, Pergamon, Oxford (1970).
38.Kirk, N. B., and Wood, J. V., “Effect of the Calcination Process on the Crystallite Shape of Sol-Gel Cerium Oxide Used for Glass Polishing,” J. Mater. Sci., vol. 30, No. 8, pp. 2171-2175 (1995).
39.李秋煌,「改善環境的仙丹」,科學發展月刊,第370期,第28-33頁(2003)。
40.江建志,「氧化鈰粉體之合成及其在化學機械研磨漿料中之特性探討」,碩士論文,逢甲大學化學工程學系,台中 (2003)。
41.Trovarelli, A., “Catalytic Properties of Ceria and CeO2-containing Materials,” Catal. Rev., vol. 38, No. 4, pp. 439-509 (1996).
42.Jiang, M., Wood, N. O., and Komanduri, R., “On Chemo-mechanical Polishing (CMP) of Silicon Nitride (Si3N4) Workmaterial with Various Abrasive,” Wear, vol. 220, No. 1, pp. 59-71 (1998).
43.Djurčić, B., and Pickering, S., “Nanostructured cerium oxide: preparation and properties of weakly-agglomerated powders,” J. Eur. Chem. Soc., vol. 19, No. 11, pp. 1925-1934 (1999).
44.Kuang, W., Fan, Y., and Chen, Y., “Preparation, Characterization, and Catalytic Properties of Ultrafine Mixed Fe–Mo Oxide Particles,” Colloid. Interf. Sci., vol. 215, No. 2, pp. 364-369 (1999).
45.Chen, D. -H., and He, X. -R., “Synthesis of nickel ferrite nanoparticles by sol-gel method,” Res. Bull., vol. 36, No. 6-7, pp. 1369-1377 (2001).
46.Klug, H. P., and Alexander, L. E., X-ray Diffraction Procedures, Wiley, New York, 1954.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top