跳到主要內容

臺灣博碩士論文加值系統

(3.234.211.61) 您好!臺灣時間:2021/10/18 19:41
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:李兆彥
研究生(外文):Li Jau-Yan
論文名稱:聚乳酸熱安定性之研究
論文名稱(外文):Thermal degradation of poly (lactic acid)
指導教授:楊木火李豐祥
學位類別:碩士
校院名稱:高苑科技大學
系所名稱:高分子環保材料研究所
學門:工程學門
學類:化學工程學類
論文種類:學術論文
論文出版年:2006
畢業學年度:94
語文別:中文
論文頁數:126
中文關鍵詞:聚乳酸活化能
外文關鍵詞:poly lactic acidactivation energies
相關次數:
  • 被引用被引用:9
  • 點閱點閱:720
  • 評分評分:
  • 下載下載:213
  • 收藏至我的研究室書目清單書目收藏:0
中文摘要
本研究探討兩種不同分子量聚乳酸之熱安定性,實驗首先利用元素分析儀(Elementary Analysis;EA),微差分掃瞄式熱分析儀(Differential Scanning Calorimeter;DSC),固態核磁共振光譜儀(Soild Nuclear Magnetic Resonance;SNMR),霍式轉換紅外線光譜儀(Fourier Transform Infrared Spectrophotometer;FTIR),X光射線繞射儀(X-Ray Diffractometer;XRD),熱機械分析儀(Thermomechanical Analyzer;TMA),動態機械分析儀(Dynamic mechanic analysis;DMA)進行特性測試與鑑定。並利用熱重分析法在三種不同環境氣體下分別利用動態加熱方式與恆溫加熱方式,分析兩種重量平均分子量分別為5,000及10,000 g/mole的聚乳酸試料,研究其熱劣化行為。
綜合本實驗結果與討論,本文獲致如下結論:
一、本實驗利用霍式轉換紅外線光譜儀,固態核磁共振光譜儀,元素分析儀進行聚乳酸試料的化學成份與結構分析,確定本樣品為聚乳酸。
二、本實驗利用微差分掃瞄式熱分析儀,X光射線繞射儀,熱機械分析儀,動態機械分析儀分析試料的Tg、Tm、Ts、Tc 等熱性質,確認聚乳酸的物理性質。
三、以Flynn-Wall法解析聚乳酸的全程熱分解行為,結果發現,聚乳酸5,000 g/mole平均活化能於空氣中為:158 kJ/mole;氮氣中為:91 kJ/mole;氧氣中為:201 kJ/mole。聚乳酸10,000 g/mole平均活化能於空氣中為:224 kJ/mole;氮氣中為:141 kJ/mole;氧氣中為:226 kJ/mole。兩種聚乳酸的活化能皆隨重量殘餘分率的增加而降低,並隨著氧氣濃度的增加而增加,而且分子量越高,活化能越大,其熱安定性越好。
四、本文亦以恆溫熱重法檢驗聚乳酸的熱分解行為,結果發現,聚乳酸5,000 g/mole平均活化能於空氣中為:91 kJ/mole;氮氣中為:73 kJ/mole;氧氣中為:108 kJ/mole。聚乳酸10,000 g/mole平均活化能於空氣中為:115 kJ/mole;氮氣中為:82 kJ/mole;氧氣中為:125 kJ/mole。兩種PLA的活化能在重量損失率0.05-0.75的範圍內,皆隨著氧氣濃度的增加而增加,而且分子量越高,活化能越大,其熱安定性越好。
英文摘要

In this study, the thermal stability for the different molecular weight of poly (lactic acid)s (PLAs) were investigated. The characteristics of PLA were examined by elementary analysis (EA), soild nuclear magnetic resonance (NMR), different scanning calorimeter (DSC), fourier transform infrared spectrophotometer (FTIR), x-ray diffractometer (XRD), thermomechanical analyzer (TMA) and dynamic mechanic analysis (DMA). The thermal degradation behaviors of PLA ( 5,000 and 10,000 g/mole) were carried by dynamic thermogravivetric method and isothermal thermo- gravivetric method under three various condition gas. The experimental results of poly(lactic acid)s are showed that as following : Firstly, physical and morphological properties such as function groups and weight loss were characterized by FTIR, NMR, EA. Secondly, physical and morphological properties such as crystalline melting point, glass transition point, crystallization temperature, softing temperature , degradation behavior and mechanical properties were characterized by DSC, XRD, TMA and DMA. Thirdly, according to Flynn-Wall analytical model, the TGA experimental results showed that the activation energies of dynamic heating of PLA ( 5,000 g/mole) were 91, 158 and 201 kJ/mole and PLA ( 10,000 g/mole) were 141, 224 and 226 kJ/mole under nitrogen, air and oxygen, respectively. Moreover, the thermal degradation behavior activation energies of poly (lactic acid) increase with increase molecular weight and increase with content percentage of oxygen, and it was decreased with increase the weight remaining fraction. Fourthly, according to Flynn-Wall analytical model, the TGA experimental results showed that the activation energies of isothermal of PLA ( 5,000g/mole) were 73, 91, and 108 kJ/mole and PLA ( 10,000g/mole) were 82, 115, and 125 kJ/mole under nitrogen, air and oxygen, respectively. Moreover, the TGA showed that the activation energy increase with molecular weight, and increase with content percentage of oxygen in the weight lossing fraction in the range from 0.05 to 0.75.
總目錄
頁次
中文摘要…………………………………………………….…………Ⅰ
英文摘要……………………………………………………..………...Ⅲ
致謝…………………………………………………….…….………...Ⅴ
總目錄…………………………………………………….…………….1
表目錄…………………………………………………………………..4
圖目錄…………………………………………………………………..6
第一章 ,緒論………………………………………………………….11
1-1前言…………………………………………………………...11
1-2研究目的……………………………………………………...12
第二章.文獻回顧……………………………………………………. 13
2-1高分子降解………………………………………….………..13
2-2傳統塑膠與生物可分解材料的優劣性之比較……….……..13
2-3生物分解性高分子簡述…………………………….………..15
2-4聚乳酸…………………………………...……………….…...15
2-5聚乳酸之組成與特性………………………….…….……….16
2-6分子量對聚乳酸的重要性…………………………….……..17
2-7降解機制以及影響降解速度的因素…………………..…….18
2-8熱重分析儀之原理與應用………………………….………...19
2-9熱重曲線………………………………………………………21
2-10影響熱重測量的因素及誤差分析……………...…………...21
2-11熱劣化行為…………………………………………………..22
2-12聚乳酸的熱劣化行為…………………………………...…...22
2-13元素分析儀的原理和應用…………………………………..23
2-14核磁共振儀的原理和應用…………………………………..24
2-15微差分掃描式熱分析儀的原理和應用……………………..25
2-16霍氏轉換紅外線光譜儀的原理和應用……………………..26
2-17 X射線繞射儀的原理和應用…………………………..........26
2-18熱機械分析儀的原理和應用………………………………..27
2-19動態機械分析儀的原理和應用…………..…………...…….27
第三章我實驗部份………..……………………………………………28
3-1試料…………………………………………………………....28
3-2實驗儀器……………………………………………………....28
3-3熱劣化反應…………………………………………………....31
3-4實驗步驟……………………………………………………....31
3-5反應條件……………………………………………………....31
第四章、結果與討論…………………………………………….……..32
4-1聚乳酸的測定……………………….……………………….....32
4-1-1聚乳酸試料之元素分析…………………………...……32
4-1-2聚乳酸試料之微差分掃描式熱分析…………...……... 32
4-1-3聚乳酸試料之核磁共振分析…………………………...33
4-1-4聚乳酸試料之紅外線光譜分析………………………...33
4-1-5 聚乳酸試料之X射線繞射分析………………..……...34
4-1-6聚乳酸試料之熱機械分析……………………………...34
4-1-7聚乳酸試料之動態機械分析…………………………...34
4-2聚乳酸的動態熱安定性………………………………………..35
4-2-1聚乳酸的全程熱分解行為……………………………...35
4-2-2聚乳酸的動態熱重行為分析…………………………...35
4-2-3聚乳酸熱劣化活化能...……………………………........36
4-3聚乳酸的恆溫熱安定性………………………………………..40
4-3-1聚乳酸的恆溫初始熱分解行為…………...……………40
4-3-2聚乳酸的恆溫熱重行為分析…………………………...40
4-3-3聚乳酸恆溫熱劣化活化能...………………………........41
第五章我結論………………………………………………………..…44
參考文獻…………………………………………………………..…. 121

表目錄
…頁次
表 1. ..分解性高分子聚合物材料之分類… ..…………………...…..46
表 2. ..生物分解性高分子材料之技術構成…………………………46
表 3. ..聚乳酸與其它泛用塑膠材料物性比較……………………....47
表 4. ..生物可分解性塑膠產品的主要用途…………………………48
表. 5. ..已商業化生產的生物可分解塑膠…………………………....49
表 6. ..生物可分解型塑膠之性質比較………………………………50
表. 7. ..聚乳酸PLA-5和PLA-10之元素分析儀分析表..………….. 51
表. 8. ..聚乳酸之13C-NMR化學偏移……………….….………...…. 52
表. 9. ..聚乳酸之DMA儲存模數、損失模數與阻尼係數
…………………………………………………………………53
表10. 聚乳酸之DMA阻尼係數最高值之儲存模數與損失模數
…………………………………………………………………53
表.11. .聚乳酸PLA-5和PLA-10於不同加熱速率下的熱安定性
。環境氣體:空氣…....……………………………………....54
表12. 聚乳酸PLA-5和PLA-10於不同加熱速率下的熱安定性
。環境氣體:氧氣…....……………………………………....54
表13. 聚乳酸PLA-5和PLA-10於不同加熱速率下的熱安定性
。環境氣體:氮氣…....……………………………………....55
表14. 聚乳酸之熱劣解活化能……………....……………...…….....56
表15. 聚乳酸PLA-5和PLA-10於四種不同恆定溫度下的速率
常數。環境氣體:空氣………….…………………………...57

表16. 聚乳酸PLA-5和PLA-10經熱劣化後所得之總活化能。
環境氣體:空氣…...………...………………………………..57
表17. 聚乳酸PLA-5和PLA-10於四種不同恆定溫度下的速率
常數。環境氣體:氮氣………….……………………….…..58
表18. 聚乳酸PLA-5和PLA-10經熱劣化後所得之總活化能。
環境氣體:氮氣…...………...………………………………..58
表19. 聚乳酸PLA-5和PLA-10於四種不同恆定溫度下的速率
常數。環境氣體:氧氣………….………………………..….59
表20. 聚乳酸PLA-5和PLA-10經熱劣化後所得之總活化能。
環境氣體:氧氣…...………...………………………………..59
表21. 聚乳酸PLA-5和PLA-10於恆溫狀態下,全程平均活化
能之數據………….………….………………………………..60

圖目錄
頁次
圖 1. ..工業上P L A的製造法…...……………………………..…… 61
圖 2. ..兩種不同形式的乳酸立體結構圖…………….……..………. 62
圖 3. ..三種不同形式乳酸的雙環異構物結構圖…………….…....... 62
圖 4. ..聚乳酸PLA-5常溫至250℃之DSC分析圖形……………... 63
圖 5. ..聚乳酸PLA-5常溫至400℃之DSC分析圖形………….…..64
圖 6. ..聚乳酸PLA-10常溫至250℃之DSC分析圖形……….……65
圖 7. ..聚乳酸PLA-10常溫至400℃之DSC分析圖形……….……66
圖 8. ..聚乳酸PLA-5和PLA-10之DSC圖形….………………….. 67
圖 9. ..聚乳酸PLA-5和PLA-10之DSC圖形….………….………. 68
圖10. 聚乳酸PLA-5常溫13C-NMR圖形….……………….…........ 69
圖11. 聚乳酸PLA-10常溫13C-NMR圖形….………………..……. 70
圖12. 聚乳酸PLA-5之IR分析圖形..……………..……….…….... 71
圖13. 聚乳酸PLA-10之IR分析圖形..……………………..……... 72
圖14. 聚乳酸PLA-5之XRD分析圖形.………………..….………. 73
圖15. 聚乳酸PLA-10之XRD分析圖形.……………...….……….. 74
圖16. 聚乳酸PLA-5和PLA-10之XRD圖形....….…………....…. 75
圖17. 聚乳酸PLA-5之TMA分析圖形.………………….………...76
圖18. 聚乳酸PLA-10之TMA分析圖形.………..……….…….......77
圖19. 聚乳酸PLA-5和PLA-10之TMA圖形.…………...……...... 78
圖20. 聚乳酸PLA-5之DMA分析圖形...…………………..…..…. 79
圖21. 聚乳酸PLA-10之DMA分析圖形.………………….…........ 80
圖22. 聚乳酸PLA-5和PLA-10之DMA圖形.………………........ 81
圖23. 聚乳酸PLA-5和PLA-10之DMA圖形.………………........ 82
圖24. 聚乳酸PLA-5和PLA-10之DMA圖形.………………........ 83
圖25. 不同分子量聚乳酸的重量殘餘分率對溫度之關係圖形。
環境氣體:氮氣;加熱速率5℃/min……………………….. 84
圖26. 不同分子量聚乳酸的重量殘餘分率對溫度之關係圖形。
環境氣體:氮氣;加熱速率10℃/min……………………… 85
圖27. 不同分子量聚乳酸的重量殘餘分率對溫度之關係圖形。
環境氣體:氮氣;加熱速率20℃/min……………………… 86
圖28. 不同分子量聚乳酸的重量殘餘分率對溫度之關係圖形。
環境氣體:氮氣;加熱速率40℃/min……………………… 87
圖29. 聚乳酸於四種不同加熱速率下,重量損失分率對溫度之
關係圖形。 =5,000 g/mole;環境氣體:氮氣.......………88
圖30. 聚乳酸於四種不同加熱速率下,重量損失分率對溫度之
關係圖形。 =10,000 g/mole;環境氣體:氮氣….……....89
圖31. 聚乳酸於四種不同加熱速率下的熱重分析曲線及微分熱
重分析曲線圖形。 =5,000 g/mole;環境氣體:空氣…...90
圖32. 聚乳酸於四種不同加熱速率下的熱重分析曲線及微分熱
重分析曲線圖形。 =5,000 g/mole;環境氣體:氮氣…...91
圖33. 聚乳酸於四種不同加熱速率下的熱重分析曲線及微分熱
重分析曲線圖形。 =5,000 g/mole;環境氣體:氧氣…...92
圖34. 聚乳酸於四種不同加熱速率下的熱重分析曲線及微分熱
重分析曲線圖形。 =10,000 g/mole;環境氣體:空氣….93
圖35. 聚乳酸於四種不同加熱速率下的熱重分析曲線及微分熱
重分析曲線圖形。 =10,000 g/mole;環境氣體:氮氣……94
圖36. 聚乳酸於四種不同加熱速率下的熱重分析曲線及微分熱
重分析曲線圖形。 =10,000 g/mole;環境氣體:氧氣.….95
圖37. 聚乳酸固定重量損失分率,以加熱速率的對數對溫度倒
數之關係圖形, =5,000 g/mole;環境氣體:空氣……....96
圖38. 聚乳酸固定重量損失分率,以加熱速率的對數對溫度倒
數之關係圖形, =5,000 g/mole;環境氣體:氮氣……....97
圖39. 聚乳酸固定重量損失分率,以加熱速率的對數對溫度倒
數之關係圖形, =5,000 g/mole;環境氣體:氧氣……....98
圖40. 聚乳酸固定重量損失分率,以加熱速率的對數對溫度倒
數之關係圖形, =10,000 g/mole;環境氣體:空氣……..99
圖41. 聚乳酸固定重量損失分率,以加熱速率的對數對溫度倒
數之關係圖形, =10,000 g/mole;環境氣體:氮氣……. 100
圖42. 聚乳酸固定重量損失分率,以加熱速率的對數對溫度倒
數之關係圖形, =10,000 g/mole;環境氣體:氧氣……. 101
圖43. 不同分子量聚乳酸之活化能對重量殘餘百分率之關係圖
形。環境氣體:空氣…………………………………………. 102
圖44. 不同分子量聚乳酸之活化能對重量殘餘分率之關係圖形
。環境氣體:氮氣…………………………………………… 103
圖45. 不同分子量聚乳酸之活化能對重量殘餘分率之關係圖形
。環境氣體:氧氣…………………………………………… 104
圖46. 聚乳酸於三種環境氣體中,活化能對重量殘餘分率之關
係圖形, =5,000 g/mole……………………………..…..... 105
圖47. 不同分子量聚乳酸的重量殘餘分率對時間之關係圖形。
環境氣體:空氣;恆溫溫度:250℃………...……………... 106

圖48. 不同分子量聚乳酸的重量殘餘分率對時間之關係圖形。
環境氣體:空氣;恆溫溫度:275℃………...……………... 107
圖49. 不同分子量聚乳酸的重量殘餘分率對時間之關係圖形。
環境氣體:空氣;恆溫溫度:300℃………...……………... 108
圖50. 不同分子量聚乳酸的殘餘重量分率對時間之關係圖形。
環境氣體:空氣;恆溫溫度:325℃………...……………... 109
圖51. 聚乳酸於四種不同恆溫條件下,重量殘餘分率對時間之
關係圖形。 =5,000 g/mole;環境氣體:空氣………….. 110
圖52. 聚乳酸於四種不同恆溫條件下,重量殘餘分率對時間之
關係圖形。 =10,000 g/mole;環境氣體:空氣……….…111
圖53. 聚乳酸於四種不同恆溫條件下,重量殘餘分率的倒數對
時間之關係圖形。 =5,000 g/mole;環境氣體:空氣.......112
圖54. 聚乳酸於四種不同恆溫條件下,重量殘餘分率的倒數對
時間之關係圖形。 =10,000 g/mole;環境氣體:空氣….113
圖55. 不同分子量之聚乳酸的速率常數的對數值對溫度倒數之
關係圖形。環境氣體:空氣………………………………… 114
圖56. 聚乳酸於四種不同恆溫溫度下,重量殘餘分率的倒數對
時間之關係圖形。 =5,000 g/mole;環境氣體:氮氣......115
圖57. 聚乳酸於四種不同恆溫溫度下,重量殘餘分率的倒數對
時間之關係圖形。 =10,000 g/mole;環境氣體:氮氣… 116
圖58. 不同分子量之聚乳酸的速率常數的對數值對溫度倒數之
關係圖形。環境氣體:氮氣……………………………… 117
圖59. 聚乳酸於四種不同恆溫條件下,重量殘餘分率的倒數對
時間之關係圖形。 =5,000 g/mole;環境氣體:氧氣….. 118
圖60. 聚乳酸於四種不同恆溫條件下,重量殘餘分率的倒數對
時間之關係圖形。 =10,000 g/mole;環境氣體:氧氣….119

圖61. 不同分子量之聚乳酸的速率常數的對數值對溫度倒數之
關係圖形。環境氣體:氧氣……….……….………………. 120
參考文獻
1.李仁智,「聚乳酸/聚甲基丙烯酸甲酯掺合體結構與物性之研究」,碩士論文,長庚大學,桃園(1997)。
2.江明峰,「聚乳酸/蒙脫土奈米複合材料之製備與物性研究」,碩士論文,國立中興大學,台中(1986)。
3.林岱佐,「聚乙二醇末端基對其與聚乳酸摻合物相容性、結晶行為與形態學的影響」,碩士論文,國立台灣大學,台北(1986)。
4.Koenig, M. F., and Huand, S. J., “Biodegradable blends and composites of polycaprolactone and starch derivatives,” Polymer, Vol. 36, No. 9, pp. 1877-1882 (1995).
5.Kaplan, D. L., and Mayer, J. M., “Degradation methods and degradation kinetics of polymer films,” Polymer Degradation and Stability, Vol. 45, No. 2, pp. 165-172 (1994).
6.Fan, Yujiang., and Nishida, Haruo., “Thermal degradation behaviour of poly(lactic acid) stereocomplex,” Polymer Degradation and Stability, Vol.86, No. 2, pp. 197-208 (2004).
7.Onyari, J. M., and Huang, S. J., “Multi-component comb shaped and networks containing poly(lactic acid),” Polymeric Materials Science and Engineering, Vol. 72, pp. 137 (1995).
8.Li, Suming., and Molina, “Hydrolytic and enzymatic degradations of physically crosslinked hydrogels prepared from PLA/PEO/PLA triblock copolymers,” Journal of Materials Science: Materials in Medicine, Vol. 13, No. 1, pp. 81-86 (2002).
9.Hakkarainen, Minna., “Weight losses and molecular weight changes correlated with the evolution of hydroxyacids in simulated in vivo degradation of homo-and copolymers of PLA and PGA,” Polymer Degradation and Stability, Vol. 52, No. 3, pp. 283-291 (1996)
10.Li, Lihua., and Dinq, Shan., “Preparation and degradation of PLA/Chitosan composite materials,” Journal of Applied Polymer Science, Vol. 91, No. 1, pp. 274-277 (2004).
11.Wang. Hua-lin., and Sheng. Min-Gang., “Advance in the studies on degradation of PLA and PLA composites,” Polymeric Materials Science and Engineering, Vol. 20, No. 6, pp. 20-23 (2004).
12.Janorkar, Amol V., “Degradation studies of PLA films grafted with hydrophilic polymers,” Annual Technical Conference – ANTEC, Vol. 2, pp. 1769-1773 (2004)
13.Ho, Kai-Lai., and Rojas, Augusto., “Degradation of polylactic acid (PLA) plastic in Costa Rican soil and Iowa State University compost rows,” Journal of Environmental Polymer Degradation, Vol. 7, No. 4, pp. 173-177 (1999).
14.Renouf-Glauser, Annette C., and Rose, John., “A degradation study of PLLA containing lauric acid,” Biomaterials, Vol. 26, pp. 2415-2422 (2005).
15.Kopinke, F. D., and Mackenize, K., “Mechanistic aspects of the thermal degradation of poly(lactic acid) and poly(β-hydroxybutyric),” Journal of Analyticl and Applied Pyrolysis, Vol. 40, pp. 43-53 (1997).
16.Pual, M. A., and Dubois, Ph., “New nanocomposite materials based on plasticized poly(L-lactide) and organo-modified montmorillonites: thermal and morpho- logical study,” Polymer, Vol. 44, pp. 443-450 (2003).
17.Pual, M. A., and Dubois, Ph., “Polylactide/montorillonite nanocomposites: study of hydrolytic degradation,” Polymer Degradation and Stability, Vol. 87, pp. 535-542 (2005).
18.Wachsen, O., and Platkowski, K., “Thermal degradation of poly-L-lactide studies on kinetics, modeling and melt stabilization,” Polymer Degradation and Stability, Vol. 141, pp.87-94 (1996).
19.Serlo, W., and Linna, O., “Treatment of pectus excavatum with bioabsorbable polyactide plates: Preliminary results,” Journal of Pediatric Surgery, Vol. 37, No. 9, pp. 1281-1286 (2002).
20.Christel, P., and Chabot, F., “In vivo fate of bioresorvavle bone plates in long-lasting poly(L-lactic acid),” Transactions of the Annual Meeting of the Society for Biomaterials in conjunction with the International Biomaterials Symposium, Vol. 7, pp279-289 (1984).
21.Handolin, Lauri., and Pohjonen, Timo., “The effects of low-intensity pulsed ultrasound on bioavsorbable self-reinforced poly (l-lactide) screws,” Biomaterials, Vol. 23, No. 13, pp. 2377-2736 (2002).
22.Pramono, Nugroho., and Hiroshi, Mitomo., “Degradation of poly(L-lactic acid) by γ-irradiation,” Polymer Degradation and Stability, Vol.72, pp. 337-343 (2001).
23.Gabriele, Reich., “Ultrasound-induced degradation of PLA and PLGA during microsphere processing: influence of formulation variables,” European Journal of Pharmaceutics and Biopharmaceutics, Vol. 45, pp. 165-171 (1998).
24.Yew, G.. H., and Ishiaku, U. S., “Water absorption and enzymatic degradation of poly(lactic acid)/rice starch composites,” Polymer Degradation and Stability, Vol. 90, pp. 488-500 (2005).
25.Lerav, J. L., and Chabot, F., “In vivo degradation of lactic acid stereocopolymers for internal Fixation devices,” Transactions of the Annual Meeting of the Society for Biomaterials in conjunction with the Interna, Vol. 4, pp.37-47 (1981).
26.Nakamura, T., and Hitomi, S., “Bioabsorption of polylactide with different molecular properties,” Joumal of Biomedical Materials Research, Vol. 23, No. 10, pp. 1115-1130 (1989).
27.Perego, Gabriele., and Bastioli, Catia., “Effect of molecular weight and crystallinity on poly(lactic acid) mechanical properties,” Journal of Applied Polymer Science, Vol. 59, No. 1, pp. 37-43 (1996).
28.Robert, P., and Mauduit, J., “Biocompatibility and resorbability of a polylactic acid membrane for periodontal guided tissue regeneration,” Biomaterials, Vol. 14, No. 5, pp.353-358 (1993).
29.Mehta, Sanjay., and panda, A. K., “Progress of polymerization of D, L-lactide through differential scanning calorimetry and gel permeation chromatography,” Journal of Thermal Analysis and Calorimetry, Vol. 52, No. 2, pp. 559-564 (1998).
30.Park, T. G., and Lu, W., “Importance of in vitro experimental conditions on protein release kinetics, stability and polymer degradation in protein encapsulated poly(D,L-lactic acid-co-glycolic acid)microspheres,” Joumal of Cortrolled Release, Vol. 33, No. 2, pp. 211-221 (1995).
31.Viljanmaa, m., and Soderqard. A., “Hydrolytic and environmental degradation of lactic acid based hot melt adhesives,” Polymer Degradation and Stability, Vol. 78, No. 2, pp. 269-279 (2002).
32.Jamshidi, K., and lkada, Y., “Thermal characterization of polylactides,” Polymer, Vol. 29, No. 12, pp. 2229-2234 (1988).
33.Cam, D., and lkada, Y., “Degradation of high molecular weight poly(L-lactide) in alkaline medium,” Biomaterials, Vol. 16, No. 11, pp. 833-843 (1995).
34.McNeill, I. C., and Leiper, H. A., “Degradation studies of some polyesters and polycarbonates polylactide: general features of the degradation under pro grammed heating conditions,” Polymer Degradation and Stability, Vol. 11, No. 3, pp. 317-333 (1985).
35.Viljanmaa, M., and Soderqard, A., “The use of lactic acid-based hot melt adhesive in the industrial lamination process,” International Journal of Adbesion and Adbesives, Vol. 23, No. 2, pp.151-154 (2003).
36.Viljanmaa, M., and Tormala, P., “Lactic acid based polymers as hot melt adhesives for packaging applacations,” International Journal of Adbesion and Adbesives, Vol. 22, No. 3, pp.219-226 (2002).
37.Merkli, A., and Tabarabay, C., “Biodegradable polymers for the controlled release of ocular drugs,” Progres in Polymer Science, Vol. 23, No. 3, pp. 563-580 (1998).
38.Soderqard, A., and Nasman, J. H., “Stabilization of poly(L-lactide) in the melt,” Polymer Degradation and Stability, Vol. 46, No. 1, pp. 25-30 (1994).
39.Soderqard, A., and Johansson, L. S., “XPS study of the catalytic tin in poly(L-lactide),” American Chemical Society, Vol. 37, No. 1, pp. 685-686 (1996).
40.Catiker, E., “Degradation of PLA, PLGA homo- and copolymers in the presence of serum albumin: A spectroscopic investigation,” Polymer International, Vol. 49, No. 7, pp. 728-734 (2000).
41.Meason, Mariah N., “ Predicting controlled-release behavior of degradable PLA-b-PEG-b-PLA hydrogels,” Marcromolecules, Vol. 34, No. 13, pp. 4630-4635 (2001).
42.Chu, C. C., “Degradation phenomena of two linear aliphatic polyester fibres used in medicine and surgery,” Polymer, Vol. 26, No. 4, pp. 591-594 (1985).
43.Nakamura, T., and Hitomi, S., “Bioabsorption of polylactides with different molecular properties,” Journal of Biomedical Materials Research, Vol. 23, No. 10, pp. 1115-1130 (1989).
44.Schindler, A., and Pitt, C. G., “Biodegradable elastomeric polyesters,” American Chemical Society, Vol. 23, No. 2, pp. 111-112 (1982).
45.吳明珠,儀器分析,文京圖書有限公司,台北,第564-571頁(1998)。
46.J. H. Flynn and L. A. Wall., “A quick, direct method for the determination of activation energy from thermogravimetric data,”Polymer. Lett, Vol. 4, pp. 323- 328 (1966).
47.葉獻彬,「生物可降解性聚乳酸高分子之合成與降解性質探討」,碩士論文,陽明大學,台北(2001)。
48.闕如玉,「生物可降解性牙用/骨用聚乳酸高分子摻合物的製備與鑑定」,碩士論文,台北醫學院,台北(2001)。
49.Wu, Chin-San., “Improving polyethylene-octene elastomer/chitosan by graftation of acrylic acid onto polyethylene-octene elastomer-mechaniacl properties and biodegradability examination and composites characterization,” Journal of Polymer Science, Vol. 41, No. 24, pp. 3882-3891 (2003).
50.李育德,聚合物物性,高立圖書有限公司,台北,第222-228頁(1993)。
51.楊木火,「聚丙烯胺碸的合成與其熱分解行為之研究」,碩士論文,國立成功大學,台南(1986)。
52.蔡德坤,「交互組成聚醯烴碸的熱劣化反應之研究」,碩士論文,國立成功大學,台南(1987)。
53.Liaw, D. J., and Lee, W. F., “Thermal degradation of poly[(3-Dimethyl meth- acryloylethyl) ammonium propanesulfonate],” Polymer, Vol. 30, pp. 4697 -4706 (1985).
54.Doyle, C. D., “Comparative study of various methods for thermogravimetric analysis of polystyrene,” Polymer, Vol. 6, pp. 639-640 (1962).
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊