跳到主要內容

臺灣博碩士論文加值系統

(44.220.184.63) 您好!臺灣時間:2024/10/11 00:14
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:陳建志
研究生(外文):Chien-Chih Chen
論文名稱:微射出成型的製程參數對於含微流道生物晶片特性之影響
論文名稱(外文):The Effectiveness of Micro Injection Molding Manufacturing Parameters to the Characteristic of Micro Channel Biochips
指導教授:陳俊生陳俊生引用關係簡仁德簡仁德引用關係
指導教授(外文):Chun-Sheng ChenRean-Der Chien
學位類別:碩士
校院名稱:龍華科技大學
系所名稱:機械系碩士班
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2006
畢業學年度:94
語文別:中文
論文頁數:88
中文關鍵詞:微射出成型微細特徵轉寫正確性
外文關鍵詞:micro injection moldingmicro-featurereplication accuracy
相關次數:
  • 被引用被引用:1
  • 點閱點閱:359
  • 評分評分:
  • 下載下載:86
  • 收藏至我的研究室書目清單書目收藏:2
由於高分子微成型技術具有價位低和可大量生產的優點,因此在一些特定用途上將逐漸取代矽基或玻璃基微機電技術,其重要性也將逐漸展現出來。本研究利用微射出成型方式,來探討具微細特徵生物晶片之成型性與轉寫特性。在本研究中,利用紫外光深刻模造法(UV-LIGA)製程以矽基SU-8光阻,並搭配微電鑄來得到用於DNA/RNA檢測用之微特徵流體平台之Ni-Co基模仁,再以不同成型條件對此含微流道之生物晶片,包括寬度與深度之轉寫正確性作一研究,過程中是以3D雷射顯微鏡作一量測與分析。研究結果顯示,寬度與深度之正確性在一般成型範圍內皆隨參數之增加而提高,但相對的也產生了明顯的翹曲量,利用MPCI能夠獲得整體的最佳參數組合,其中又以模具溫度與融膠溫度影響整體成型性最重要的因素。
Micro fabrications of polymer are becoming increasingly important and considering as a low-cost alternative to the silicon or glass-based MEMS technologies. Micro injection molding has been applied in order to discuss the characteristics of molding and replication for micro-feature biochips. In this study, micro molding via micro injection molding were applied on the micro-featured fluidic platform and used for DNA/RNA test. UV-LIGA like processes were used to prepare silicon based SU-8 photoresist followed by electroforming for making Ni-Co based stamp. Then, with different molding micro channel biochips featured with the replication accuracy for the depth and width in this study. The 3D laser microscope was employed for the measurement and analysis during the process. Based on the process result, the accuracy of width and depth could be increased following by the mold temperature, melt temperature, injection velocity and packing pressure within typical forming window. Mold temperature and melt temperature were investigated as the key elements for overall forming effects from the result of this study.
目錄

摘要 i
Abstract ii
誌謝 iii
表目錄 vi
圖目錄 vii
第一章 緒論 1
1-1 前言 1
1-2 微成型技術 2
1-3 文獻回顧 3
1-4 研究動機與目的 6
1-5 論文架構 7
第二章 田口品質工程 10
2-1 信號雜音比 10
2-2 直交表的特性與應用 11
2-3 實驗數據的分析流程 13
2-4 品質機能展開法 15
2-5 模糊田口法 16
第三章 實驗方法與實驗設備 21
3-1 模仁 21
3-2 成型材料 21
3-3 微射出成型模具與實驗設備 22
3-4 田口法於微射出成型之實驗 23
3-5 微流道尺寸之量測 24
3-6 微流道粗糙度之量測 24
3-7 表面翹曲度量測 25
3-8 模糊田口法 25
第四章 製程參數對成品品質之影響 36
4-1 對微流道轉寫正確性之影響 36
4-1-1 COC材料轉寫正確性之影響 37
4-1-2 PC材料轉寫正確性之影響 38
4-1-3 PS材料轉寫正確性之影響 39
4-1-4 PMMA材料轉寫正確性之影響 39
4-2 對微流道表面品質之影響 40
4-3 對成品翹曲度之影響 41
4-4 以模糊田口法探討並找出最佳成型條件 42
第五章 材料特性對成品品質之影響 78
5-1 對微流道轉寫正確性做比較 78
5-2 對微流道表面品質作比較 79
5-3 對微流道翹曲度作比較 80
5-4 綜合性比較 81
5-5 模流分析 81
第六章 結論與未來展望 84
參考文獻 85
參考文獻

1.Anton, P. S., Silberglitt, R., Schneider, J. “The Global Technology Revolution”, National Defense Research Institute, Santa Monica, USA, (2001).
2.Siegel, R. W., Hu, E., Roco, M. C., “Nanostructure Science and Technology, a Worldwide Study”, National Science and Technology Council, USA, (1999).
3.Kopp M.U., Crabtree H.J., Manz A. “Developments in technology and applications of microsystems”, Analytical Chemistry, Vol. 1, No. 3 pp. 410~419 (1997).
4.McCormick, R. M., Piotter, V., “Microchannel electrophoretic separations of DNA in injection-molded plastic substrates”, Analytical Chemistry, Vol. 69, No.14, pp. 2626~2630 (1997).
5.Hanemann, T., Heckele, M., Piotter, V., “Current status of micromolding technology”, Polymer News, Vol. 25, Part 7, pp. 224~229 (2000).
6.Duffy, D. C., McDonald, J. C., Schueller, O. A., Whitesides, G. M., “Rapid prototyping of microfluidic systems in polydimethylsiloxane” Analytical Chemistry, Vol. 70, No. 23, pp. 4974~4984 (1998).
7.Gale, M. T., “Replication techniques for diffractive optical elements”, Microelectronic Engineering, Vol. 34, No.3~4, pp. 321~339 (1997).
8.Kopp, M. U., Crabtree, H. J., Manz, A. et al., “Developments in technology and applications of microsystems Current Opinion in Chemical Biology”, Journal of Micromechanics and Microengineering, Vol. 1, No. 3, pp. 410~419 (1997).
9.Becker, H., Dietz, W., “Microfluidic devices for μ-TAS applications fabricated by polymer hot embossing”, Proceedings of SPIE - The International Society for Optical Engineering, Vol. 3515, pp. 177~182 (1998).
10.Heckele, M., Schomburg, W. K., “Review on micro molding of thermoplastic polymers” Journal of Micromechanics and Microengineering, Vol. 14, No. 3, pp.1~14 (2004).
11.Shan, X. C., Maeda, R., Murakoshi, Y., “Micro hot embossing for replication of microstructures”, Japanese Journal of Applied Physics, Vol. 42, No. 6, pp. 3859~3862 (2003).
12.Yu, L. Y., “Experimental investigation and numerical simulation of injection molding with micro-features”, Polymer Engineering and Science, Vol. 42, No. 5, pp. 871~888 (2002).
13.Ong, N. S., “Experimental investigation into micro injection molding of plastic parts”, Materials and Manufacturing Processes, Vol. 20, No. 2, pp. 245~253 (2005).
14.Shen, Y. K., “Extension method and numerical simulation of micro-injection molding”, International Communications in Heat and Mass Transfer, Vol. 31, No. 6, pp. 795~804 (2004).
15.Zhao, J., Mayes, R. H., Chen, G., Xie, H., Chan, P. S., “Effects of process parameters on the molding process”, Polymer Engineering and Science, Vol. 43, No. 9, pp.1542~1554 (2003).
16.Chen, S. C., Chang, J. A., Chang, Y. J., Chau, S. W., “Micro injection molding of micro fluidic platform”, Annual Technical Conference, Vol. 2, pp. 136~140 (2005).
17.Whiteside, B. R., Martyn, M. T., Coates, P. D., “Micromoulding: Process Characteristics and Product Properties”, Plastics, Rubber and Composites, Vol. 32, No. 6, pp. 231~239 (2003).
18.Edwards, T. L., Mohanty, S. K., Edwards, R. K., Thomas, C. L., Frazier, A. B., “Rapid tooling using SU-8 for injection molding microfluidic components”, Proceedings of SPIE - The International Society for Optical Engineering, Vol. 4177, pp. 82~89 (2000).
19.Martynova, L., Locascio, L. E., Gaitan, M., “Fabrication of Plastic Microfluid Channels by Imprinting Methods”, Analytical Chemistry, Vol. 69, pp. 4783~4789 (1997).
20.Pfund, D., Rector, D., Shekarriz, A., Popescu, A., Welty, J., “Pressure drop measurements in a microchannel”, AIChE Journal, Vol. 46, No. 8, pp. 1496-1507 (2000).
21.Jansen, K. M., Dijk, D. J. “Effect of processing conditions on shrinkage in injection molding”, Polymer Engineering and Science, Vol. 38, No. 5, pp.838~846 (1998).
22.Chang, T. C., “Shrinkage behavior and optimization of injection molded partsstudied by the taguchi method”, Polymer Engineering and Science, Vol. 41, No. 5, pp.703~710 (2001).
23.Lin, J. L., Wang, K. S., Yan, B. H., Tarng, Y. S., “Optimiztation of the electrical discharge machining process based on the Taguchi method with fuzzy logics”, Journal of Materials Processing Technology, Vol. 102, No. 9, pp. 48~55 (1998) .
24.張金錄,”高深寬比射出成型之技術研究”,雲林科技大學機械工程研究所碩士論文,1997年6月。
25.洪英豪,”內視鏡微零件模組射出成型之研究”,交通大學機械工程研究所碩士論文,1998年6月。
26.張弘超,“射出成型製程參數對微特徵孔洞充填之影響”,成功大學航空太空工程研究所碩士論文,2004年6月。
27.廖俊郎,”射出壓縮成型對微型製品光學品質之影響研究”,雲林科技大學機械工程研究所碩士論文,2000年6月。
28.鍾清章等,品質工程(田口方法),中華民國品質學會,1994年。
29.劉克琪,「田口式品質工程與實驗設計」,華泰文化事業有限公司,1994年。
30.Kao, J. Y., Pan, Y. D., “Optimization of tool geometry in face milling operation using the fuzzy-based Taguchi method”, Journal of Technology, Vol. 16, No. 4, pp.709~716 (2001).
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top