跳到主要內容

臺灣博碩士論文加值系統

(44.220.184.63) 您好!臺灣時間:2024/10/11 01:58
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:詹育豪
研究生(外文):Yu-Hao Chan
論文名稱:利用電漿處理對鈦植體二氧化鈦層之顯微結構與特性研究
論文名稱(外文):Research of microstructure and properties on titanium implant with TiO2 layer by plasma treatment
指導教授:鄭進山鄭進山引用關係劉沖明
指導教授(外文):Ching-Sang ChengChung-Ming Liu
學位類別:碩士
校院名稱:龍華科技大學
系所名稱:機械系碩士班
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2006
畢業學年度:94
語文別:中文
論文頁數:67
中文關鍵詞:生物相容性二氧化鈦層RF放電電漿
外文關鍵詞:biocompatibilityTiO2 layerRF discharge plasma
相關次數:
  • 被引用被引用:1
  • 點閱點閱:461
  • 評分評分:
  • 下載下載:127
  • 收藏至我的研究室書目清單書目收藏:0
密度小、質量輕,造就純鈦金屬及其合金質輕而堅硬,耐腐蝕性佳、低熱傳導性以及良好的生物相容性等,種種的優良機械性質與生物特性皆使得純鈦金屬及其合金被廣泛應用於生醫裝置,此特性和鈦金屬表面暴露於大氣之中所自然生成的二氧化鈦層之性質有關,文獻也顯示二氧化鈦層將會影響鈦金屬材料植入人體後的骨整合程度。
近幾年的電漿表面改質技術在生醫植體方面有許多應用,經由電漿表面改質之生醫材料,能有效提升材料之機械特性以及加強生物相容性。因此本研究將利用13.56MHz 的RF放電電漿通入氧氣進行鈦合金(Ti-6Al-4V)表面改質,再以物理化學性分析儀器檢測試片表面的成分、元素、結構以及氧化層膜厚。
結果經由電漿表面處理之鈦基試片表面有明顯的含氧量,電漿功率、反應時間、加熱溫度增加能提升試片氧原子含量,達到增厚氧化層目的並改變了鈦基植體表面特性,其氧化層厚度有達到400nm左右的能力,且為擁有良好血液相容性的Rutile-TiO2,並增加表面能使其可濕性增加,有助於提升鈦植體與細胞的附著以及蛋白質連結的機率。高功率氧氣電漿能有效強化鈦基試片表面特性,配合熱氧化加工更顯效果促使硬度的增加,而表面硬度增加能有助於提高鈦植體的耐磨耗性,使鈦植體置於人體減少金屬離子釋出問題,並延長鈦植體壽命。
Titanium-based alloys such as CP-Ti and Ti-6Al-4V are currently widely used in biomaterial fields due to low density, high toughness, low thermal conductivity, favorable mechanical properties, and excellent biocompatibility. The properties of titanium dioxide (TiO2) layer which is spontaneously covered by a surface oxide of 1.5–10 nm thickness in air at room temperature can reveal the good biocompatibility of titanium implants. Several reports show the importance of the implant oxide surface properties for a successful osseointegration.
Recently, the applications of surface modification by plasma have been wildly used in biomaterials which are believed to improve the mechanical properties and enhance the biocompatibility. In this study, the radical frequency plasma glow discharge method with oxygen is utilized to modify the surface of Ti-6Al-4V. The physical properties of the specimens are also evaluated by electrochemical measurements and material analyses.
The result indicates that the amount of oxygen has been increased obviously by plasma treatment. As increasing the power, reaction time, temperature, the amount of oxygen increases. The properties of the titanium implants are changed by increasing the thickness of oxide layer. Once the thickness of Rutile-TiO2 layer reach around 400 nm, it has excellent blood compatibility and hydrophile. It can improve the adherence between titanium implant and cells or proteins. High power plasma can enhance effectively the hardness of the titanium alloy which can reduce the probability of metal ion releasing and increase the wear resistance and the lifespan of implants.
目 錄
中文摘要.........................................................i
Abstract........................................................iii
致謝.............................................................v
目錄.............................................................vi
表目錄............................................................viii
圖目錄............................................................ix

第一章 緒論........................................................1
1.1 研究動機與重要性................................................1
1.2 研究目的.......................................................2
1.3 全文架構.......................................................3
第二章 文獻回顧.....................................................4
2.1 生醫材料.......................................................4
2.2 鈦金屬.........................................................8
2.3 二氧化鈦.......................................................11
2.4 電漿技術.......................................................13
2.3.1 基本原理.....................................................13
2.3.2 電漿特性.....................................................15
2.3.3 放電電漿之產生法..............................................16
2.3.3.1 高週波放電之電漿............................................17
2.3.4 電漿之各種應用簡述.............................................19
2.3.4.1 生醫材料之電漿表面處理....................................20
第三章 研究材料與方法................................................23
3.1 實驗設計與流程..................................................23
3.2 實驗材料.......................................................25
3.3 實驗儀器.......................................................25
3.4 實驗步驟與方法..................................................27
第四章 結果與討論 ...................................................31
4.1 試片準備之結果..................................................31
4.2 SEM表面型態分析.................................................32
4.3 EDS表面元素分析.................................................33
4.4 XRD結構分析....................................................38
4.5 XPS元素鍵結分析.................................................41
4.6 接觸角分析......................................................50
4.7 維氏顯微硬度分析................................................54
4.8 TEM分析........................................................58
第五章 結論.........................................................60
參考文獻............................................................61

表目錄
表2-1 常見之生醫材料及其機械性質......................................7
表2-2 鈦及其合金的化學成分...........................................10
表2-3 鈦及其合金的機械性質...........................................10
表2-4 二氧化鈦的三種結晶結構特性表....................................12
表2-5 各種條件下之Vs(min)測定值......................................17
表2-6 不同形式的電漿之特徵數據........................................18
表3-1 電漿實驗參數...................................................29
表4-1 實驗之試片總數.................................................32
表4-2 ESCA全區掃描之表面元素原子百分比................................48

圖目錄
圖2-1 鈦金屬添加合金元素鋁可增加a到b相的相變化溫度.......................10
圖2-2 二氧化鈦之晶體結構,(a)Anatase;(b) Rutile;(c) Brookite.........12
圖2-3 鍍膜方式、基板溫度與粒子能量關係圖................................13
圖2-4 電漿反應示意圖.................................................14
圖2-5 各種代表性電漿之電子溫度與電子密度................................15
圖2-6 空氣放電時之Vs與pd之關係........................................17
圖3-1 實驗流程圖.....................................................23
圖3-2 電漿實驗前處理流程圖............................................24
圖3-3 高周波電漿腔體示意圖............................................29
圖4-1 不同色澤之鈦合金試片............................................31
圖4-2 鈦金屬著色示意圖...............................................32
圖4-3 場發射式電子顯微鏡觀察表面型態...................................33
圖4-4 鈦基材EDS分析,實驗功率80W、反應時間10min........................34
圖4-5 不同功率下,無加熱以及加熱200℃,反應10分鐘實驗之氧原子百分比.......35
圖4-6 不同功率下,無加熱以及加熱200℃,反應10分鐘實驗之氧原子以及鈦原子百分比之比值.............................................................35
圖4-7 功率560W於不同加熱溫度,反應10分鐘實驗之氧原子百分比..............36
圖4-8 功率560W於不同加熱溫度,反應10分鐘實驗之氧原子以及鈦原子百分比.....36
圖4-9不同功率以及不同反應時間下,無加熱實驗之氧原子百分比................37
圖4-10 高功率560W於不同加熱溫度及不同反應時間下實驗之氧原子百分比........37
圖4-11 不同功率下,無加熱,反應10分鐘實驗之XRD分析結果..................39
圖4-12 不同功率下,加熱200℃,反應10分鐘實驗之XRD分析結果...............39
圖4-13 高功率560W加熱不同溫度,反應10分鐘實驗之XRD分析結果..............40
圖4-14 取三組,反應10分鐘實驗之560W,比較XRD分析結果...................40
圖4-15 XPS元素鍵結全區掃描能譜,功率80W,反應10分鐘....................42
圖4-16 XPS元素鍵結全區掃描能譜,功率560W,反應10分鐘...................42
圖4-17 XPS元素鍵結全區掃描能譜,功率560W,加熱250℃,反應10分鐘.........43
圖4-18 XPS元素鍵結全區掃描能譜,功率560W,加熱500℃,反應10分鐘.........43
圖4-19 XPS元素鍵結全區掃描能譜,功率80W,反應30分鐘....................44
圖4-20 XPS元素鍵結全區掃描能譜,功率560W,反應30分鐘...................44
圖4-21 XPS元素鍵結全區掃描能譜,功率560W,加熱250℃,反應30分鐘.........45
圖4-22 XPS元素鍵結全區掃描能譜,功率560W,加熱500℃,反應30分鐘.........45
圖4-23 XPS元素鍵結-Ti 2p微區掃描能譜,功率80W,反應10分鐘..............46
圖4-24 XPS元素鍵結-Ti 2p微區掃描能譜,功率560W,反應10分鐘.............46
圖4-25 XPS元素鍵結-O 1s微區掃描能譜,功率80W,反應10分鐘...............48
圖4-26 XPS元素鍵結-O 1s微區掃描能譜,功率560W,反應10分鐘..............49
圖4-27 XPS元素鍵結-O 1s微區掃描能譜,功率560W,加熱250℃,反應10分鐘....49
圖4-28 XPS元素鍵結-O 1s微區掃描能譜,功率560W,加熱500℃,反應10分鐘....50
圖4-29 不同功率下,無加熱,反應10分鐘實驗之接觸角分析...................51
圖4-30 不同功率下,無加熱,反應20分鐘實驗之接觸角分析...................51
圖4-31 不同功率下,無加熱,反應30分鐘實驗之接觸角分析...................52
圖4-32 不同功率下,加熱200℃,反應10分鐘實驗之接觸角分析................52
圖4-33 高功率560W,不同加熱溫度,反應10分鐘實驗之接觸角分析.............53
圖4-34 高功率560W,不同加熱溫度,反應20分鐘實驗之接觸角分析.............53
圖4-35 高功率560W,不同加熱溫度,反應30分鐘實驗之接觸角分析.............54
圖4-36 不同功率下,無加熱,反應10分鐘實驗之維氏顯微硬度分析..............55
圖4-37 不同功率下,無加熱,反應20分鐘實驗之維氏顯微硬度分析..............56
圖4-38 不同功率下,無加熱,反應30分鐘實驗之維氏顯微硬度分析..............56
圖4-39 高功率560W,不同加熱溫度,反應10分鐘實驗之維氏顯微硬度分析........57
圖4-40 高功率560W,不同加熱溫度,反應20分鐘實驗之維氏顯微硬度分析........57
圖4-41 高功率560W,不同加熱溫度,反應30分鐘實驗之維氏顯微硬度分析........58
圖4-42 高功率560W,加熱500℃,反應10分鐘實驗之TEM分析..................59
參考文獻
[1] Huang, N.; Yang, P.; Leng, Y.X.; Chen, J.Y.; Sun, H.; Wang, J.; Wang, G.J.; Ding, P.D.; Xi, T.F.; Leng, Y., "Hemocompatibility of titanium oxide films," Biomaterials Volume 24, Issue 13, 2177-2187, (2003).
[2] Zhang, F.; Huang, N.; Yang, P.; Zeng, X.; Mao, Y.; Zheng, Z.; Zhou, Z.; et. al., "Blood compatibility of titanium oxide prepared by ion-beam-enhanced deposition," Surface and Coatings Technology Volume 84, Issue 1-3, 476-479, (1996).
[3] Steinemann, S.G., "Metal implants and surface reactions," Injury Volume 27, Supplement 3; SC16-SC22,SC49,SC52,SC55,SC58, (1996).
[4] Gurrappa, I., "Characterization of titanium alloy Ti-6Al-4V for chemical, marine and industrial applications," Materials Characterization Volume 51, Issue 2-3, 131-139, (2003).
[5] Ergun, C.; Doremus, R.H.; Lanford, W.A., "Interface reactiondiffusion in hydroxylapatite-coated SS316L and CoCrMo alloys," Acta Materialia Volume 52, Issue 16, 4767-4772, (2004).
[6] Yang, Y.C.; Chang, E., "Measurements of residual stresses in plasma-sprayed hydroxyapatite coatings on titanium alloy," Surface and Coatings Technology Volume 190, Issue 1, 122-131, (2005).
[7] Yang, Y.; Liu, Z.; Luo, C.; Chuang, Y., "Measurements of residual stress and bond strength of plasma sprayed laminated coatings," Surface and Coatings Technology Volume 89, Issue 1-2, 97-100, (1997).
[8] Ünal, Ö.; Sordelet, D.J., "In-plane Tensile Strength and Residual Stress in Thick Al2O3 Coatings on Aluminum Alloy, " Scripta Materialia, Volume 42, Issue 7, 631-636, (2000).
[9] Chu, P.K.; Chen, J.Y.; Wang, L.P.; Huang, N., "Plasma-surface modification of biomaterials," Materials Science and Engineering R Reports Volume 36, Issue 5-6, 143-206, (2002).
[10] Jun, J.; Shin, J.H.; Dhayal, M., "Surface state of TiO2 treated with low ion energy plasma," Applied Surface Science Volume 252, Issue 10, 3871-3877 , (2006).
[11] 黃瓊芳, 蔡政宏, 歐耿良, 詹宗瑾, 李勝揚, "經電漿處理後鈦植體表面形成奈米結構二氧化鈦層之微結構與性質, " Chin J Dent, Issue 3, 185-192, (2005).
[12] Suh, N.P.; Arinez, J.; Mosleh, M., "Tribology of polyethylene homocomposites," Wear Volume 214, Issue 2, 231-236, (1998).
[13] D’Lima, D.D.; Hermida, J.C.; Chen, P.C.; Colwell Jr, C.W., "Polyethylene cross-linking by two different methods reduces acetabular liner wear in a hip joint wear simulator," Journal of Orthopaedic Research Volume 21, Issue 5, 761-766, (2003)
[14] Kujala, S.; Ryhanen, J.; Danilov, A.; Tuukkanen, J., "Effect of porosity on the osteointegration and bone ingrowth of a weight-bearing nickel–titanium bone graft substitute," Biomaterials Volume 24, Issue 25, 4691-4697, (2003).
[15] Takemoto, M.; Fujibayashi, S.; Neo, M.; Suzuki, J.; Kokubo, T.; Nakamura, T., "Mechanical properties and osteoconductivity of porous bioactive titanium," Biomaterials Volume 26, Issue 30, 6014-6023 , (2005).
[16] Williams, D.F. "Definitions in biomaterials," Proceedings of a Consensus Conference of the European Society for Biomaterials, Elsevier, (1987).
[17] Baier, R.E., "Society of German Naturalists and Doctors", 8th Scientific Conference of the Gesellschart Deutscher Naturforscher Und Aeryzte, Berlin, 13, 159, (1976).
[18] Clemson Advisory Board for Biomaterials, "Definition of the word biomaterial," The 6th Annnal Intermalionel Biomaterial Symposium, 20, (1974).
[19]宋信文,陳松青,生物產業技術概論-第二章:生醫材料簡介,台北市,全華科技,第33頁, (2003).
[20] Doremus, R. H., "Review Bioceramics," J. Mater. Sci., vol. 27, 287-297, (1992).
[21] Ergun, C.; Doremus, R.H.; Lanford, W.A., "Interface reaction diffusion in hydroxylapatite-coated SS316L and CoCrMo alloys," Acta Materialia Volume 52, Issue 16, 4767-4772, (2004).
[22] Krämer, N.; Frankenberger, R., "Clinical performance of bonded leucite-reinforced glass ceramic inlays and onlays after eight years," Dental Materials Volume 21, Issue 3, 262-271, (2005).
[23] Piattelli, A.; Scarano, A.; Mangano, C., "Clinical and histologic aspects of biphasic calcium phosphate ceramic (BCP) used in connection with implant placement," Biomaterials Volume 17, Issue 18, 1767-1770, (1996).
[24] Huang, N;. Yang, P.; Cheng, X.; "Blood compatibility of amorphous oxide films synthesized by ion beam enhanced deposition", Biomaterials Volume 19, 771, (1998).
[25] Heimke, G.; "The Aspects and Methods of Fixation of Bone Replacement," Osseo-Integrated Implant Volume I Basics, Materials & Joint Replacement, CRC Press Inc., 1-26, (1990).
[26] Brånemark P.I., Breine U, Adell R, Hansson B-O. "Intraosseous anchorage of dental prostheses. I Experimental studies", Scand J Plast Reconstr Surg. 3: 81, (1969).
[27] Chang, C. K.; Wu, J. S.; Mao, D. L.; Ding,C. X.; "Mechanical and histological evaluations of hydroxyapatite-coated and noncoated Ti6Al4V implants in tibia bone," J Biomed Mater Res., 56(1): 17-23, (2001).
[28] Yen, S.K.; Huang, T.Y., "Characterization of the electrolytic ZrO2 coating on Ti-6Al-4V," Materials Chemistry and Physics Volume 56, Issue 3, 214-221, (1998).
[29] Lopez, M.F.; Gutierrez, A.; Jimenez, J.A., "In vitro corrosion behaviour of titanium alloys without vanadium," Electrochimica Acta Volume 47, Issue 9, 1359 - 1364, (2002).
[30] Choubey, A.; Balasubramaniam, R.; Basu, B., "Effect of replacement of V by Nb and Fe on the electrochemical and corrosion behavior of Ti–6Al–4V in simulated physiological environment," Journal of Alloys and Compounds Volume 381, Issue 1-2, 288-294, (2004).
[31] Takemoto, S.; Hattori, M.; Yoshinari, M.; Kawada, E.; Oda, Y., "Corrosion behavior and surface characterization of titanium in solution containing fluoride and albumin," Biomaterials Volume 26, Issue 8, 829-837, (2005).
[32] Gurappa, I., "Characterization of different materials for corrosion resistance under simulated body fluid conditions," Materials Characterization Volume 49, Issue 1, 73-79, (2002).
[33] Hanawa, T.; "In vivo metallic biomaterials and surface modification," Materials Science and Engineering A Volume 267, Issue 2, 260-266, (1999).
[34] Larsson, C ; Emanuelsson, L ; Thomsen, P ; Ericson, L E ; Aronsson, B -O ; Kasemo, B ; Lausmaa, J. "Bone response to surface-modified titanium implants: studies on the early tissue response to machined and electropolished implants with different oxide thicknesses," Biomaterials, 17: 605-616, (1996).
[35] Davidson, J.A.; Poggie, R.A.; Mishra A.K., " Abrasive wear of ceramic, metal, and UHMWPE bearing surfaces from third-body bone, PMMA bone cement, and titanium debris.," Biomed Mater Eng.,4(3):213-29, (1994).
[36] Mckellop, H. A.; Rostlund, T. V.; "The wear behavior of ion-implanted Ti-6Al-4V against UHMW polyethylene", J. Biomed. Mater. Res., 24, 1413-1425, (1990).
[37] Smith, C. J. E.; Hughes, A. N.; "The corrosion fatigue behavior of a titanium-6 aluminum-4 vanadium alloy", Eng. Med., 7, 158-171, (1966).
[38] Maloney, W.J.; Jasty, M.; Harris, W.H.; Galante, J.O.; Callaghan, J.J.; "Endosteal erosion in association with stable uncemented femoral components," Bone Joint Surg Am., 72(7):1025-34, (1990).
[39] Sousa, S.R.; Barbosa, M.A., "Effect of hydroxyapatite thickness on metal ion release from Ti6Al4V substrates," Biomaterials Volume 17, Issue 4, 397-404, (1996).
[40] Yen, S.K.; Huang, T.Y., "Characterization of the electrolytic ZrO2 coating on Ti-6Al-4V," Materials Chemistry and Physics, Volume 56, Issue 3, 214-221, (1998).
[41] Horn, M.; Schwerdtfeger, C.F.; Meagher, E.P.; Zeitschrift für Kristallographie, 136, 273, (1972).
[42] Meagher, E. P.; Lager, G.A.; The Canadian Mineralogist, 17, 77, (1979).
[43] Yakovlev, V. V.; Scarel, G.; Aita, C. R.; Mochizuki, S.; Appl. Phys. Lett. 76, 1107, (2000).
[44] Boenig, H. V. "Plasma science and technology," Cornell University Press., 16-35, (1982).
[45] 艾啟峰 (民國八十七年十二月), 「電漿工程科技在表面處理工業應用之發展(上)」, 科儀新知第20卷3期, 第79-89頁, (1988).
[46] 胡應強,莊妙如,都源展,(民國九十一年七月), 「電漿在構裝材料製備與製程之應用」, 工業材料雜誌,第187期, 第122-136頁, (1992).
[47] Miyake, S.; Setsuhara, Y.; Sakawa, Y.; Shoji, T., "Development of high-density RF plasma and application to PVD," Surface and Coatings Technology, 131, 1-3, 171-176, (2000).
[48] Sioshansi, P.; Tobin, E.J., "Surface treatment of biomaterials by ion beam processes," Surface and Coatings Technology, 83, 1-3, 175-182, (1996).
[49] Ohl, A.; Schröder, K., "Plasma-induced chemical micropatterning for cell culturing applications a brief review," Surface and Coatings Technology, 116-119, 820-830 , (1999).
[50] Hubler, R., "Hardness and corrosion protection enhancement behaviour of surgical implant surfaces treated with ceramic thin films," Surface and Coatings Technology Volume 116-119, 1111-1115, (1999).
[51] Hanawa, Takao, "In vivo metallic biomaterials and surface modification," Materials Science and Engineering A Volume 267, Issue 2, 260 - 266, (1999).
[52] Mandl, S.; Sader, R.; Thorwarth, G.; Krause, D.; Zeilhofer, H.-F.; Horch, H.H.; Rauschenbach, B, "Biocompatibility of titanium based implants treated with plasma immersion ion implantation," Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms Volume: 206, 517-521, (2003).
[53] Perez del Pino, A.; Fernandez-Pradas, J.M.; Serra, P.; Morenza, J.L., "Coloring of titanium through laser oxidation comparative study with anodizing," Surface and Coatings Technology Volume 187, Issue 1, 106-112, (2004).
[54] Kanagaraja, S.; Wennerberg, A.; Eriksson, C.; Nygren, H., "Cellular reactions and bone apposition to titanium surfaces with different surface roughness and oxide thickness cleaned by oxidation," Biomaterials Volume 22, Issue 13, 1809-1818, (2001).
[55] Bigerelle, M.; Anselme, K.; Noël, B.; Ruderman, I.; Hardouin, P.; Iost, A., "Improvement in the morphology of Ti-based surfaces: a new process to increase in vitro human osteoblast response," Biomaterials Volume: 23, Issue: 7, 1563-1577, (2002).
[56] Feng, B.; Weng, J.; Yang, B.C.; Qu, S.X.; Zhang, X.D., "Characterization of surface oxide films on titanium and adhesion of osteoblast," Biomaterials Volume 24, Issue 25, 4663-4670, (2003).
[57] Kawahara, D.; Ong, J.L.; Raikar, G.N.; Lucas, L.C.; Lemons, J.E.; Nakamura, M.; Oral Maxillofac. Impl. 11, 435, (1996).
[58] Leng, Y.X.; Chen, J.Y.; Yang, P.; Sun, H.; Huang, N., "Structure and properties of passivating titanium oxide films fabricated by DC plasma oxidation," Surface and Coatings Technology Volume 166, Issue 2-3, 176-182, (2003).
[59] Borgioli, F. E.; Galvanetto;, Galliano, F.P.; Bacci, T.; "Air treatment of pure titanium by furnace and glow-discharge processes," Surface and Coatings Technology , Volume 141, 103-107, (2001).
[60] Anselme, K.; Linez, P.; Bigerelle, M.; et al., "The relative influence of the topography and chemistry of TiAl6V4 surfaces on osteoblastic cell behavior," Biomaterials, 21:1567–77,(2000)
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top