(3.238.96.184) 您好!臺灣時間:2021/05/12 17:12
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:林倚聖
研究生(外文):Yi-sheng Lin
論文名稱:SOFC金屬雙極板保護性塗層開發之磁控濺射沈積LaCrO3薄膜之製程與特性研究
論文名稱(外文):Development of Protective Coating For SOFC metallic Bipolar plate Process andCharacteristics of LaCrO3 coating Synthesized by Magnetron sputtering Technique
指導教授:何偉友何偉友引用關係
指導教授(外文):Wei-yu Ho
學位類別:碩士
校院名稱:明道管理學院
系所名稱:材料暨系統工程研究所
學門:工程學門
學類:材料工程學類
論文種類:學術論文
論文出版年:2006
畢業學年度:94
語文別:中文
論文頁數:104
中文關鍵詞:磁控濺射固態氧化物燃料電池鉻酸鑭雙極板
外文關鍵詞:bipolar plateSputterLaCrO3SOFC
相關次數:
  • 被引用被引用:0
  • 點閱點閱:137
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:1
摘要
雙極板在固態氧化物燃料電池構造裡佔極重要的一環,其主要功用是作為元件的聯接,亦可作為燃料氣體與氧化氣體的隔板,目前雙極板材料主要有鉻酸鑭(LaCrO3)、鎳鉻合金、以及不銹鋼等。不鏽鋼是製作雙極板的潛力材料,除容易製造外亦可加工成薄板和形狀複雜的流道,同時成本較低廉,然而不銹鋼雙極版在陰極連結處的操作環境下,容易生成氧化膜使得電阻增加,進而降低發電效率。
為了降低不鏽鋼雙極板,因為高溫氧化而產生析出物,進而增加電阻的問題,目前已有許多研究透過表面改質,於基材表面鍍覆一層抗氧化薄膜,而本研究乃利用磁控濺射方法來進行抗氧化膜的鍍覆,其製程設計乃是利用鑭靶與鉻靶進行共濺射,改變鑭靶源輸出功率0.25A-0.75A,並在腔體內通入反應性氣體氧氣,並改變其流量2sccm-6sccm以形成LaCrO3薄膜,鍍覆於不鏽鋼基材上,並透過後處理形成LaCr03結晶,希望藉由薄膜的鍍覆提升抗高溫氧化的特性,並且降低雙極板的製作成本。
由結果顯示在X光繞射分析顯示其結構為非晶質結構,而經過熱處理至800℃可得到LaCrO3結晶。SEM分析發現不銹鋼在600℃表面開始劣化,而在800℃有析出物形成,而經過鍍覆的不鏽鋼則能有效阻止析出物形成,並且經透過膜厚量測發現,膜厚在500nm時才能有效阻隔析出物,另外透過熱重分析發現經鍍覆之不鏽鋼,其抗氧化特性比不鏽鋼穩定,同時透過恒定電位儀電阻量測發現,在800℃過後,經LaCrO3鍍覆之不銹鋼,亦比未鍍覆之不鏽鋼電阻小,因此實驗證明此方法能有效降低不鏽鋼雙極板劣化,增加其使用壽命。
Abstract

Interconnect is one of the key components in planar SOFC, which provide the electrical connection between the individual cells in a series to make SOFC stacks and separate the anode and the cathode gases. There are two types of interconnect materials commonly used in SOFC, doped LaCrO3-based ceramic materials, and high-temperature oxidation resistant alloy and stainless steels. The latter is more attractive because doped LaCrO3-based ceramic materials have low mechanical strength and high manufacturing costs. Another attractive reason is that high-temperature oxidation resistant alloy and stainless steels are relatively cheap, thin in thickness and easy to deform the complexed flow fields. However, the high-temperature oxidation resistant alloy and stainless steels used as metallic interconnects contain Cr leading to a rapid degradation of the electrical properties of a SOFC due to chromium evaporation at the cathode side of the fuel cell.

In order to render possible formation of a chromia scale for degradation of electrical property, many reports revealed surface coatings deposited by physical vapor deposition (PVD) might be a remedy for protective purpose. The target of this work is to develop a coating of LaCrO3 materials deposited on the stainless steels as a protective layer by magnetron sputtering technique. Two targets including La and Cr materials were mounted on the chamber. LaCrO3 coatings were co-deposited on the stainless steel substrates. The parameters of the sputtering process were designed including the variation of target input currents from 0.25 A to 0.75A; the introduction of reactive oxygen gas by varying flow rate from 2 to 6 sccm. The coating properties were investigated by using XRD, SEM, TGA technique.

The results reveal that, by XRD diffraction patterns, the as-deposited oxide layers exhibit amorphous structure and turn into crystalline structure after heat treatment at 800oC for 1 hour. By SEM observation of the surface morphologies, in-take oxidation of stainless steels began at 600oC, further oxidation with chromia scale precipitation occurred at 800oC which implied degradation of the electrical property. SEM observation reveals that LaCrO3 coating on stainless steels blockaded the chromia scale precipitation during the oxidation process from room temperature to 800oC. TGA analysis confirmed the oxidation resistance of the LaCrO3 coated stainless steels by weight gain analysis. The electrical resistance of the coated samples also showed lower resistance than the blank stainless steels. In this study, the results of our work confirm that LaCrO3 coating deposited by magnetron sputtering can be used as a protective coating for stainless steel.
總目錄
中文摘要..........................................Ⅰ
英文摘要..........................................Ⅱ
總目錄............................................Ⅲ
圖目錄............................................Ⅳ
表目錄............................................Ⅴ
第一章 序論........................................1
1-1 前言....................................1
1-2 研究動機................................3
1-3 研究目的................................7
第二章 文獻回顧....................................8
2-1 固態氧化物燃料電池......................8
2-1.1 基本原理與構造....................8
2-1.2 固態氧化物燃料電池雙極連接板.....11
2-1.3 雙極連接板材料選擇...............12
2-2 濺射原理與種類.........................21
2-2.1 濺射原理.........................21
2-2.2 濺射種類.........................23
2-3 離子轟擊...............................26
2-4 導電原理...............................28
2-5 氧化理論...............................29
第三章 實驗方法與步驟.............................32
3-1 鍍膜系統...............................32
3-2 實驗方法...............................32
3-3 試片準備與前處理.......................36
3-4 操作程序與實驗參數.....................39
3-4.1 薄膜沉積操作程序.................39
3-4.2 鍍膜沉積參數.....................40
3-5 分析與檢測.............................41
3-5.1 分析儀器.........................41
3-5.2 檢測儀器.........................46
3-6 氧化分析...............................48
第四章 結果與討論.................................49
4-1 化學性質分析...........................49
4-1.1 X光繞射分析.....................49
4-1.2 EDS元素分析.....................53
4-1.3 XPS元素成份分析.................58
4-2 表面與斷面微結構分析...................65
4-2.1 熱處理對不鏽鋼表面微結構之影響..65
4-2.2 熱處理對鉻酸鑭表面微結構之影響..68
4-2.3 斷面微結構分析..................71
4-3 機械性質分析...........................84
4-3.1 表面形貌與粗糙度分析............84
4-3.2 硬度分析........................90
4-4 熱分析.................................92
4-4.1 升溫............................92
4-4.2 持溫............................95
4-5 電性分析...............................97
第五章 結論......................................100
參考文獻
[1]張蕙芳,“二十一世紀的發電技術-燃料電池"能源季刊,第二十三卷
,第四期,64-78
[2]邱秋燕,“燃料電池簡介",科儀新知,第十二卷,第三期,88-93
[3]陳誦英、王峰雲、鄭淑芬,固體氧化物燃料電池(SOFC)研究進展和發
展動態2003.1-2003.9
[4]黃鎮江,燃料電池,全華圖書出版
[5]W.Z. Zhu, S.C. Deevi, Materials Science and Engineering,A348
(2003)227-243.
[6]J. W. Fergus, Solid State Ionics, 171(2004) 1-15.
[7]N.Q. Minh, T. Takahashi, Science and Technology of Ceramic Fuel
Cells,Elsevier, Amsterdam, 1995, pp.165-198.
[8]T. Brylewski, M. Nanko, T. Maruyama, K. Przybylski, Solid State
Ionics,143(2001) 131-150.
[9]Günter Schiller, R. H. Henne, M. Lang, R. Ruckdäschel, S.Schaper
,Fuel Cells Bulletin, 21(2002) 7-12.
[10]S.Kanazawa, T.Ito, Surface and Coatings Technol.,169-170(2003)
508-511.
[11]W.J. Quadakkers, H. Greiner, W. Köck, in:U. Bossel (Ed.),
Proceedings of the First European Solid Oxide Fuel Cell Forum
(3-7 October 1994,Lucerne,Switzerland), Druckerei J. Kinzel,
Göttingen, Germany,1994,p.525.
[12]W.J. Quadakkers, H. Greiner, W. Köck, H.P. Buchkremer, K.
Hilpert,D. Stover,in:B. Thorstensen (Ed.), Proceedings of the
Second European Solid Oxide Fuel Cell Forum (6-10 May 1996,
Oslo, Norway), Druckerei J. Kinzel, Göttingen,Germany, 1996,
p.297.
[13]W. Köck, H.-P. Martinz, J. Eiter, W. Kraussler, H. Clemens,
in:Proceedings of the 13th International Plansee Seminar, Vol.
4,1993,p.315.
[14]C.Gunter, H.-J. Beie, P. Greil, F. Richter, in:B. Thorstensen
(Ed.), Proceedings of the Second European Solid Oxide Fuel Cell
Forum (6-10 May 1996, Oslo, Norway), Druckerei J. Kinzel,
Göttingen, Germany, 1996, p.491.
[15]S.C. Singhal,“Science and Technology of Solid Oxide Fuel
Cells,”MRS Bulletin, March 2000.
[16]Nguyen Q. Minh, “Ceramic Fuel Cell,” J.Am.Ceram. Soc.,76
[17]R.W.K Honeycombe &H.K.D Bhadeshia著 蔡明欽譯 “鋼顯微組織
與性質"五南圖書出版
[18]S.C.Singhal and K.Kendall,in : High-temperature solid oxide
Fule Call:fundamentals, design, and applicatons (Elsevier
Advanced Technology, New York,2003) p.173-195

[19]W. Vielstich,A.Lamm,and H.A.Gasteiger,in: Handbook of fuel
cells:fundamentals technology and applications(Wiley,West
Sussex,2003)p.1037-1054
[20]J.H.Kim,R.H.Sng,and S.H.Hyun,Soiid State Ionics,174(2004)
185-191
[21]陳俊偉”固態氧化物燃料電池金屬雙極版抗氧化性之研究"台灣科
技大學碩士論文.
[22] S.Linderoth, Controlled reactions between chromia and coating on alloy surface. Surface and Technology,1996,80,pp185-189.
[23 Huang K Q, Hou P Y, Goodenough J B. Characterization of iron-based
alloy intercom-nects for reduced temperature solid oxide fuel
cells. Solid State Ionics,2000,129,pp237-250.]
[24]Brylewski T, Nanko M, Maruyama T, et al .Application of Fe-16Cr
ferritic alloy to in-tercon
[25]S.Kanazawa, T.Ito, K.Yamada, T.Ohkubo, Y.Nomoto, T.Ishihara,
Y.Takita. Preparation of doped LaGaO3 films by pulsed laser
deposition. Surface and Technology,2003, 169-170,pp508-511.
[26]J.H. Zhu *, Y. Zhang , A. Basu , Z.G. Lu , M. Paranthaman , D.F.
Lee , E.A. Payzant LaCrO -based coatings on ferritic stainless
steel for solid oxide fuel cell interconnect applications.

[27]Christopher Johnsona, Randall Gemmena, Nina Orlovskayab,*
Nano-structured self-assembled LaCrO3 thin film deposited by RF-magnetron sputtering on a stainless steel interconnect materia
[28] ”磁控濺射技術介紹”, 誠真企業有限公司,P1
[29]R.L.Boxman etal.,“Handbookof vacuum arc science and echnology
,”Noyes publications, 1995
[30]M.Holmberg and A.“Film deposition by plasma techniques,
”Springer-Verlag,1995.
[31]W. D. Westwood,“Chap. 9 Reactive Sputter deposition”,Handbook
of Plasma Processing Technology, (Noyes Publication, Park Ridge,
New Jersey, USA, 1990)
[32]D. L. Smith,“Thin-Film Deposition Principles and Practice”,
The McGraw-Kill Companies, Inc. 483-499(1999)
[33]B.Window and N.Savvides, J. Vac. Sci. Technol., A4(2)(1986)196.
[34]R.D.Bland,G.J.Kominiak and D.M.Mattax,J.Vac.Sci.Tech.,Ⅶ(4)
(1984)671.
[35] Rointan F. Bunshah et al. ,”Deposition Technologies for Films
and Coatings”, Noyes
[36]王朝正,鐵-錳-鋁-鉻合金的高溫氧化,清華大學博士論文,(1984).

[37]N Birks,and G H Meier 「Intorduction to High Temperature Oxidation of Metals」,Edward Arnold,PP.31-65,1983.
[38]金重勛 熱處理 復文書局出版(二OO四年二月十八版三刷發行)
[39]丁志華,管正平,黃新言,戴寶通, “奈米壓痕簡介”,奈米通訊,
第九卷,第三期,1999,第4-10 頁。
[40]Mark R. VanLandingham, “Review of Instrumented Indentation”,
J. Res. Natl. Lnst. Stand. Techno., 108, 2003, pp.249-265.
[41]網路資料http://www.djgx.net
[42]Clive Whiston 著 李志甫編譯 X-射線法 高麗圖書有限公司出版.
[43]汪建民 材料分析 中國材料科學學會
[44]孫逸民, 陳玉舜, 趙敏勳, 謝明學, 劉興鑑, 主編 儀器分析 全威圖書有限公司出版.
[45]John F. Moulder, Handbook of X-ray Photoelectron Spectroscopy.
[46]Nina Orlovskaya, Nanoindentation of La-Cr-O Thin Films Drexel University ,Philadelphia,USA.
[47]John L. Vossen and Werner Kerm, ”Thin Film Process”, Academic
Proc.(1991)134.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔