(3.238.173.209) 您好!臺灣時間:2021/05/09 15:49
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:詹慕萱
研究生(外文):Mu-hsuan Chan
論文名稱:陰極電弧沉積二氧化鈦多層膜之製程與特性研究
論文名稱(外文):Process and Characterization of Titanium Dioxide Coatings by Cathodic Arc Deposition
指導教授:何偉友何偉友引用關係
指導教授(外文):Wei-Yu Ho
學位類別:碩士
校院名稱:明道管理學院
系所名稱:材料暨系統工程研究所
學門:工程學門
學類:材料工程學類
論文種類:學術論文
論文出版年:2006
畢業學年度:94
語文別:中文
論文頁數:109
中文關鍵詞:陰極電弧蒸鍍系統、二氧化鈦、光催化、可見光光觸媒
外文關鍵詞:visible-light photocatalyst.Cathodic Arc Evaporation SystemTitanium dioxidePhotocatalyst
相關次數:
  • 被引用被引用:3
  • 點閱點閱:150
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
隨著能源短缺、環保意識的抬頭,二氧化鈦光觸媒材料直接利用太陽光進行光催化反應以分解各種污染物質,逐漸受到重視。由於二氧化鈦只吸收紫外光波長範圍,太陽光利用比例低(紫外光僅佔太陽光的5%),因此應用範圍有限,無法廣泛的運用於日常生活中。因此,提高二氧化鈦光觸媒之特性已成為研究重點,利用不同改質方式如添加第三元素於TiO2將可有效的提高其光能量利用率。若能利用可見光激發觸媒反應,且對污染物質具有良好分解效率,發展應用必會更加廣泛。
本研究利用陰極電弧蒸鍍系統(Cathodic Arc Evaporation System), 製備二氧化鈦(TiO2)、銅元素摻雜二氧化鈦(TiO2/Cu)與鉻元素摻雜二氧化鈦薄膜(TiO2/Cr)並沉積在不鏽鋼、矽晶片等基材上。研究內容包括:藉由改變氧分壓(0.13Pa~2.0Pa)來探討其微結構變化和光觸媒之特性、熱處理對光觸媒材料之晶體結構及摻入金屬對薄膜的光觸媒特性之影響。
本研究結果顯示氧分壓在1.3 Pa之TiO2可得到較明顯之銳鈦礦相,TiO2/Cr、TiO2/Cu均為非晶質結構,以450oC恆溫3小時熱處理所有的薄膜,TiO2轉變為銳鈦礦與金紅石共存相,TiO2/Cr得到少量的銳鈦礦與金紅石為主之共存相,TiO2/Cu可得到銳鈦礦與金紅石共存相。利用亞甲基藍(methylene blue)分解反應與水接觸角分析薄膜的親水性變化以測試光催化性質,分別照射紫外光(365 nm)及可見光(>450nm)光源,結果顯示氧分壓在1.3 Pa之二氧化鈦薄膜照射紫外光(365 nm)下水接觸角在25分鐘即趨近於0˚,且具有較快的亞甲基藍分解速率之光催化效率。熱處理後之TiO2/Cr照射可見光(>450 nm)下水接觸角在15分鐘即趨近於0˚,而TiO2/Cu水接觸角沒有明顯變化,不具有親水性的表現。利用紫外-可見光吸收光譜儀(UV-Visible spectroscope)分析薄膜在不同光波長下的吸收光譜,其結果為TiO2吸收波長為376nm,TiO2/Cu與 TiO2/Cr薄膜,吸收波長偏移至可見光範圍(500nm~570nm)。
Due to the energy shortage and environmental protection issues, titanium dioxide used as photocatalyst by absorbing solar energy to decompose various kinds of pollutant has been an interesting research recently. Moreover, for pure TiO2, only the ultraviolet fraction of the solar irradiation (about 5%) is active in the photoexcitation processes. Recently, many researches are working on the utilization of visible light to activate catalyst behaviors of titanium dioxide in order to expand applications in many fields.
Titanium oxide (TiO2) and Copper-doped titanium oxide (TiO2/Cu) and Chromium-doped titanium oxide (TiO2/Cr) films were prepared by Cathodic Arc Deposition System in this study. Stainless steel coupons and silicon wafer are used as the substrates. The titanium oxide thin films were synthesized by introducing different partial pressure of oxygen gas. Following the deposition process, post-treatment of the as-deposited specimens was conducted by heating up to 450oC for 3 hours.
The results show that XRD diffraction patterns reveal titanium oxide films with anatase phase, however, for the specimens with TiO2/Cr and TiO2/Cu structures exhibit amorphous structure. After heat treatment at 450oC by 3 hour, TiO2 films contained anatase and rutile coexisted phases. On the other hand, heat-treated TiO2/Cr and TiO2/Cu films also gave anatase and rutile coexisted phases. The photocatalytic properties, under UV and visible lights, were characterized by degradation of methylene blue in aqueous solution and the water-contact angle measurement. The result revealed that, for the titanium oxide films, the contact angle decrease to 0° under UV light within 25 minutes and the best degradation rate of methylene blue was comparable to the other films. For the TiO2/Cr films with post heat treatment, the water contact-angle was characterized by decreasing to 0° within 15 minutes under visible illumination. However, the TiO2/Cu exhibits less photocatalytic properties by degradation of methylene blue and the water contact-angle measurement. UV-Visible spectroscope was used to observe the film absorption edge under UV and visible lights. The absorption edges of TiO2 films are 376nm. The absorption edges of TiO2/Cu and TiO2/Cr films are shifted 500nm~570nm by UV-Visible spectroscope.
總目錄

中文摘要 I
英文摘要 III
總目錄 V
圖目錄 IX
表目錄 XIII

第一章 前言 1
1.1 概述 1
1.2 研究動機 2
1.3 研究目標 3

第二章 文獻回顧 4
2.1 二氧化鈦光觸媒 4
2.1.1 二氧化鈦的種類 6
2.1.2二氧化鈦光觸媒特性之應用 8
2.1.3 光觸媒之氧化還原原理 11
2.1.4 光催化作用 12
2.2 薄膜製備 15
2.2.1 二氧化鈦製備 15
2.2.2 陰極電弧蒸鍍原理 17
2.2.3 真空電弧的產生 18
2.2.4 陰極點( Cathodic Spot ) 19
2.2.5 輝光放電 20
2.3 二氧化鈦改質 23
2.3.1 添加導電性金屬原子 24
2.3.2 添加金屬離子 25

第三章 實驗方法 27
3.1 實驗設備 27
3.2 材料選擇 28
3.2.1 試片準備 28
3.2.2 試片清洗 28
3.3 實驗設計與流程 30
3.4 鍍膜製程 31
3.5 分析方法 32
3.5.1 XRD分析 32
3.5.2 FE-SEM 32
3.5.3 X光電子能譜儀 33
3.5.4 原子力顯微鏡 34
3.5.5 UV-visible分析 34
3.5.6 接觸角分析 36
3.5.7 光觸媒薄膜分解亞甲基藍的實驗 38

第四章 結果與討論 41
4.1 TiO2單層膜 41
4.1.1 TiO2薄膜結構分析 41
4.1.2 薄膜表面形貌與微觀結構 43
4.1.3 XPS 分析 48
4.1.4 UV-visible分光光譜分析 51
4.1.5 光觸媒特性- 親水性之影響 51
4.1.6 光觸媒特性- 光催化活性之影響 55
4.2 TiO2/Cu多層膜 56
4.2.1 摻雜銅對薄膜結構之影響 56
4.2.2 摻雜銅之薄膜表面形貌與微觀結構 58
4.2.3 XPS 分析 62
4.2.4 TiO2/Cu薄膜吸收光譜分析 65
4.2.5 TiO2/Cu之光觸媒特性- 親水性之影響 66
4.2.6 TiO2/Cu之光觸媒特性- 光催化活性之影響 67
4.3 TiO2/Cr多層膜 69
4.3.1 摻雜鉻對TiO2薄膜結構之影響 69
4.3.2 摻雜鉻之薄膜表面形貌與微觀結構 71
4.3.3 XPS 分析 75
4.3.4 TiO2/Cr薄膜吸收光譜分析 78
4.3.5 TiO2/Cr之光觸媒特性- 親水性之影響 79
4.3.6 TiO2/Cr之光觸媒特性- 光催化活性之影響 79
4.4 熱處理對薄膜之影響 81
4.4.1 熱處理對薄膜結構之影響 81
4.4.2 熱處理對表面形貌與微觀結構之影響 84
4.4.3 XPS 分析 89
4.4.4 熱處理之UV-visible分光光譜分析 96
4.4.5 熱處理對光觸媒特性影響- 親水性試驗 97
4.4.6 熱處理對光觸媒特性影響- 光催化活性 99

第五章 結論與未來工作 100
5.1 結論 100
5.2 未來工作 102

參考文獻 103
參考文獻

1.A. Fujishima and K. Honda,“Electrochemical Photolysis of Water at a Semiconductor Electrode”, Nature, 238(1972)37.
2.K-I. Suzuki, Purification and Treatment of Water and Air (1993) 421-434.
3.R. W. Mattews, J. Phys. Chem. 91, (1987) 3328-3333.
4.A. Heller, Acc. Chem. Res. 14, (1981) 154-162.
5.M. A. Fox, and M.Y. Dulay, Chem. Rev. 93(1), (1993) 341-357.
6.A. Fernandez, G. Lassaletta, V. M. Jimenez, A. Justo, A. R. Gonzalez-Elipe, J-M. Herrmann, H, Tahri, and Y. Ait-Ichou, Applied Catalysis B: Environmental, 7 (1995) 49-63.
7.Merta I. Litter, Applied Catalysis B: Environmental , 23, (1999) 89-114.
8.T. Sumita, H. Otsuka, H. Kubota, M. Nagata, Y. Honda, and R. Miyagawa, Nuclear Instruments and Methods in Physics Research B, 148, (1999) 758-761
9.D. Dumitriu, A. R. Bally, C. Ballif, P. Hones, P. E. Schmid, R. Sanjinés, F. Lévy and V. I. Pârvulescu,“Photocatalytic degradation of phenol by TiO2 thin films prepared by sputtering”, Applied Catalysis B: Environmental, 25 (2000) 83-92.
10.Che-Hsin Yang, Chao-Chen Yang, Journal of CHEN-MIN college 6 June (2002) 1
11.L. S. Dubrovinsky, N. A. Dubrovinskaia, V. Swamy, J. Muscat, N. M. Harrison, R. Ahuja, B. Holm and B. Johansson, Nature, 410 (2001) 653.
12.C. H. Li,“Dispersion and Impreganating Titania with Nanosized Silver and Its Photocatalytic Property”.(2004)
13.Zheng Huang et al., J. Photochemistry and Photobiology A:Chemistry 130(2000) 163
14.T. Saito et al., J. Photochemistry and Photobiology B:Bio 14(1992)369
15.Tadashi Matsunaga et al., Applied and Environmental microbiology (1988) 1330
16.Taoda et al., Deodorizing lamp and Method for production thereof, U.S. Patent 5670 (1997) 206
17.藤山鳥昭、橋本和仁、渡部俊也,光清淨革命-活躍的二氧化鈦光觸媒,張立群譯,呂宗昕校訂,協志工業叢書發行,(2000)
18.Kayano Sunada et al., J. Antibact Antifung Agents 26 No.11(1998) 611
19.Gordon Cheseer et al., J. Photochem. Photobiol. A:Chem. 71 (1993) 291
20.M. Bekholet, Wat. Sci. Tech. 35:11-12 (1997) 95-100.
21.K. Sunda, Y. Kikuchi, K. Hashimoto, and A. Fujishima, Enviromental Science and Technology, 32:5 (1998) 726-728.
22.M. Schiavello, Heterogeneous Photocatalysis (1997).

23.H. Sakai, R-X. Cai, R. Baba, K. Hashimoto, Y. Kubota, and A. Fujishima, Purification and Treatment of Water and Air, (1993) 651-657.
24.M. R. Hoffmann, S. T. Martin, W. Choi, and D. W. Bahnemann, Chem. Rev. 20 (1995) 69-95.
25.A. Mills and S. Le Hunte,“An overview of semiconductor photocatalysis”, Journal of Photochemistry and Photobiology A: Chemistry , 108 (1997) 1-35.
26.D. Byun, Y. Jin, B. Kim, J. K. Lee and D. Park,“Photocatalytic TiO2 deposition by chemical vapor deposition”, Journal of Hazardous Materials ,B73 (2000) 199-206.
27.P. O. Larsson, A . Andersson, L. R. Wallenberg, B. Svensson, “Combustion of CO and Toluene; Characterisation of Copper Oxide Supported on Titania and Activity Comparisons with Supported Cobalt, Iron, and Manganese Oxide”, Journal of catalysis ,163 (1996) 279-29.
28.P. Zeman, and S. Takabayashi,“Effect of total and oxygen partial pressures on structure of photocatalytic TiO2 films sputtered on unheated substrate”, Surface and Coatings Technology, 153 (2002) 93-99.
29.P. Sawunyama, A. Yasumori and and K. Okada,“The nature of multilayered TiO2-based photocatalytic films prepared by a sol-gel process”, Materials Research Bulletin, 33(5) (1998) 795–801.
30.H. Yumoto, S. Matsudo, K. Akashi,“Photocatalytic decomposition of NO2 on TiO2 films prepared by arc ion plating”, Vacuum, 65 (2002) 509-514.
31.A. A. Voevodin, J. M. Schneider, C. Caperaa, P. Stevenson & A. Matthews,“Characterisation of a Saddle Field Source for Deposition of Diamond-like Carbon Films”, ceranmcs international, (1996) , 22.
32.李玉華,“應用在硬膜蒸鍍上之陰極弧光技術”,(18) , 科儀新知, 38-43。
33.賴冠仁,“冷陰極電弧電漿沈積之製程技術原理”,(16), 科儀新知, 5, 83-94。
34.江政忠、蔡春頁鴻、陳至信、鄭銘湖,“濺鍍製程薄膜均勻性的研究”,(13), 真空科技, 59-63。
35.許世昌,“電弧離子鍍膜技術之概論”,120, 工業材料期(80), 53-57。
36.http://elearning.stut.edu.tw/m_facture/Nanotech/Web/ch3.htm
37.Robert W. Berry, Peter M. Hall, Murray T. Harris,“Van Nostrand Reinhold”, Thin Film Technology, (1980), 201.
38.G .R.Bamwenda, S. Tsubuta, T . Nakamura, M. Haruta , J. Photochem. Photobiol. A: Chem. , 89, (1995) 177-189
39.M. Albert , Y. M. Gao , D. Toft , K. Dwight and A. Wold , Mater.
40.G. Lassaletta , A. R. Gonzalez-Elipe , A. Justo , A. Fernandez , F.J. Ager , M. A. Respaldiza , J. C. Soares , M. F. da Silva , J. Mate. Sci.,31 , (1996) 2325-2332
41.J. M. Herrmann , H. Tahiri , Y. Ait-Ichon , G. Lassaletta , A. R.Gonzalez-Elipe , A. Fernandez , Appl. Catal. B : Environ., 13, (1997), 219-228
42.Veronica Vamathevan, Rose Amal, Donia Beydoum, Gary Low, Stephen McEvoy, J. Photochem. Photobiol. A: Chem. 148(2002)233
43.M. Anpo, Studies in surface Science and Catalysis 130, (2000), 157-167
44.K.Wilke, H.D.Breuer, J. Photochem. Photobiol. A : Chem, 121, (1999), 49-53
45.J . A .Navio, G. Colon, M. Macias, C. Real, M.I .Litter, Appl.Catal. A : General, 177, (1999), 111-120
46.W. Choi, A. Termin, M. R. Hoffmann, J. Phys. Chem, 98, (1994), 13669-13679
47.V. Brezova, A. Blazkova, L. Karpinsky, J. Groskova, B.Havlinova, V. Jorik, M. Ceppan, J. Photochem. Photobiol. A:Chem. , 109, (1997), 177-183
48.汪建民, 材料分析 (1998).
49.R.E. Tanner , Y. Liang , E.I. Altman a, Surface Science 506 (2002) 251–271
50.Hongbo Jiang, Lian Gao, Materials Chemistry and Physics, 77, (2002) 878-881
51.Kyriaki E. Karakitsou and Xenophon E. Verykios, J. Phys. Chem. 97, (1993), 1184-1189
52.P. Zeman, and S. Takabayashi, J. Vac. Sci. Technol. A 20 (2) (2002) 388-393.
53.H. Yoneyama, S. Haga, J. Phys. Chem., 93, (1989)4833
54.H. Tang, K. Prasad, R. Sanjines, P. E. Schmid, and F. Levy, J. Appl. Phys., No.4, (1994) 75
55.周宏邦,“濺鍍二氧化鈦與氮摻雜二氧化鈦薄膜之結構與光觸媒性質研究”.(2004)
56.W. Zhang, Y. Li, S. Zhu, F. Wang,“Copper doping in titanium oxide catalyst film prepared by dc reactive magnetron sputtering”,Catalysis Today, 93-95 (2004) 589-594.
57.Andrew L. N., Kristine L., Tyrone L. D., Joanne J. M., Brenda J. L. ,“Oxidation state of chromium associated with cell surfaces of Shewanella oneidensis during chromate reduction”, Applied Surface Science, 202 (2002) 150–159
58.Z. Liu, L. Hong, B. Guo, “Physicochemical and electrochemical characterization of anatase titanium dioxide nanoparticles”, Journal of Power Sources, 143 (2005) 231–235
59.C.W. Su,“A Study on the Preparation of Photocatalytic Titanium Dioxide Thin Film by Arc Ion Plating”.(2003)
60.Y. C. Li, “A Study on the Kinetics and Factors Affecting Photoelectrocatalytic Destruction of Methylene Blue with a TiO2 Electrode”,(2000).

61.Ana M. R., Go S., Albert C., Kengo S., Joan R. M., Noboru Y. , “ Cr-doped TiO2 gas sensor for exhaust NO2 monitoring”, Journal of Power Sources, 143 (2005) 231–235
62.C. He, Y. Yu, X. Hu, A. Larbot,“Influence of silver doping on the photocatalytic activity of titania films”, Applied Surface Science, 200 (2002) 239.
63.F. Zhang, G. K. Wolf, X. Wang, X. Liu,“Surface properties of silver doped titanium oxide films”,Surface and Coating Technology, 148 (2001) 65.
64.D. Szymanowski, A. Sobczyk, M. Gazicki-Lipman, W. Jakubowski, L. Klimek, Materials Science and Engineering B, 118 (2005) 187-191.
65.曾怡享,“奈米金屬氧化鈦觸媒還原氧化鈦”.(2003)
66.R.S. Sonawane, S.G. Hegde, M.K. Dongare, Materials Chemistry and Physics, 77(2002) 744-750.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔