1.中央銀行(2005),中央銀行季刊,第二十七卷第四期。
2.張斐章、張麗秋與黄浩倫(2004),類神經網路理論與實務,東華書局。
3.葉怡成(2001),類神經網路模型應用與實作,儒林書局。
4.賴景昌(1993),國際金融理論-基礎篇,茂昌書局,13~23頁。
5.李天行(2004),「整合類神經網路與迴歸分析於匯率之預測-以東南亞金融風暴期間新台幣兌美元匯率為例」,統計與資訊評論, 1-24頁。6.聶建中、馮正安與郭繼良(2001),「金融風暴期間新台幣兌美元匯率預測-倒傳遞神經網路之應用」,台灣金融財務季刊,119~147頁。
7.卓師銘(2003),遺傳演化類神經網路預測匯率─以美元為例,東吳大學經濟學研究所碩士論文。8.徐希銘(2003),運用類神經網路預測新台幣匯率,東吳大學企業管理研究所碩士論文。9.邱志中(2003),長短期匯率預測模式績效之比較,成功大學財務金融研究所碩士論文。
10.梁晉嘉(2002),以非線性模式進行匯率走勢預測之研究-類神經網路模式之建立與應用,中山大學經濟學研究所碩士論文。11.Battiti. R. (1992). “First- and Second-Order Methods for Learning between Steepest Descent and Newton’s Method.” Neural Computation, Vol. 4, no. 2, pp.141-166.
12.Bennie, W. and A. Milam (1999).“Pricing of Homeowner Association Dues with a Neural Network”, International Journal of Information and Management Sciences, Vol. 10, no.1, pp.73-80.
13.Broyden, G. C. (1970). “The Convergence of a Class of Double-Rank Minimization Algorithms”, Journal Institute of Mathematics. and Its Applications, Vol. 6, pp. 76-90.
14.Chinn, M. D. and R. A. Meese (1995). “Banking on Currency Forecasts: How Predictable is Change in Money? “, Journal of Internation Economics, Vol. 38, pp. 161-178.
15.Clarida, R. H., Sarno, L., Taylor, M. P. and G. Valente (2003). “The Out-of- Sample Success of Term Structure Models as Exchange Rate Predictors: A Step Beyond”, Journal of International Economics, Vol.60, pp. 61-83.
16.Coskun, N. and T. Yildirim (2003). “The Effects of Training Algorithms in MLP Network on Image Classification”, Neural Networks, 2003. Proceedings of the International Joint Conference, Vol.2, pp. 1223-1226.
17.David, J. T., Episcopos, A. and S. Wettimony (2001). “Predicting Direction Shifts on Canadian-US Exchange Rate with Artifical Neural Network”, International Journal of Intelligent Systems in Accounting, Vol.10, pp. 83-96.
18.Demuth, H. and M. Beale (2001). Neural Network Toolbox. For use with MATLAB. User’s guide, version 4.
19.Episcopos, A. and J. Davis (1996). “Predicting Returns on Canadian Exchange Rates With Artificial neural Networks and EGARCHM-M Model“, Neural Computing and Application, Vol. 4, pp. 168–174.
20.Fiore, C. D., Fanelli, S. and P. Zellini (2004). “An Efficient Generalization of Battiti-Shanno’s Quasi-Newton Algorithm for Learning in MLP-Networks”, Springer-Verlag Berlin Heidelberg, pp. 483-488.
21.Fine T. L. (1999). Feedforward Neural Network Methodology. Springer-Verlag.
22.Fletcher, R. and C. M. Reeves (1964). “Function Minimization by Conjugate Gradients”. Computer Journal 7, pp.149-154.
23.Fletcher, R. (1970). “A New Approach to Variable Metric Algorithms”, The Computer Journal, Vol. 13, pp. 317-322.
24.Goldfarb, D. (1970). “A Family of Variable Metric Methods Derived by Variational Means”, Mathematics Computation, Vol. 24, pp. 23-26.
25.Hann, T. H. and E. Steurer (1996). “Much ado About Nothing? Exchange Rate Forecasting: Neural Networks vs. Linear Models Using Monthly and Weekly Data”, Neurocomputing, Vol. 10, pp. 323-339.
26.Jang, J.-S. R. (1993). “ANFIS: Adaptive-Network-Based Fuzzy Inference Systems “ ,IEEE Transactions on Systems, Vol. 23, pp. 665-685.
27.Johan, F. K. and K. V. D. Herman (2002). “Neural Network Pruning Applied to Real Exchange Rate Analysis”, Journal of Forecasting,Vol. 21, pp. 559-577.
28.Kamrwzaman, J. and R. A. Sarke (2003). “Forecasting of Currency Exchange Rate Using ANN: A Case Study”, IEEE, December.14-17, pp. 793-797.
29.Levenberg, K. (1944). “A Method for the Solution of Certain Problems in Least Squares”, Quaterly of Applied Mathematics, pp.164-168.
30.Lewis, C. D. (1982). “Industrial and Business Forecasting Methods”, London, Butterworths.
31.Lin, C. T. and C. S. G. Lee (1996). Neural Fuzzy System. New Jersey:Prentice-Hall Inc.
32.Marquardt, D. (1963). "An Algorithm for Least-Squares Estimation of Nonlinear Parameters", Journal of the Society for Industrial and Apllied Mathematics, pp.431-441.
33.Makridakis, S. (1993) “Accuracy measures: Theoretical and practical concerns,” International Journal of Forecasting, Vol. 9, pp. 527-529.
34.MacKay, D. J. C. (1992) “A Practical Bayesian Framework for Backpropagation Networks”. Neural Computation, Vol. 4(3), pp. 448-472.
35.Moody, J. and C. Darken (1989). “Fast Learning in Networks of locally- tuned Processing Units”, Neural Computation, Vol. 1, pp. 281-294.
36.Moller, M. F. (1993). “A Scaled Conjugate Gradient Algorithm for Fast Supervised Learning”. Neural Network Vol. 6, pp. 525-533.
37.Nakagawa, H. (2002). “Real Exchange Rates and Real Interest Differentials: Implications of Nonlinear Adjustment in Real Exchange Rates“, Journal of Monetary Economics, Vol. 49, pp. 629-649.
38.Powell, M. J. D. (1977). “Restart Procedures for the Conjugate Gradient Method”. Mathematical Programming Vol. 12, pp.241-254.
39.Polak, E. and G. Ribiere (1969). “Note Sur La Convergence De Methodes De Directions Conjuguees”, Revue Francaise Informatique et de Recherche Operationelle. pp. 35-43.
40.Riedmiller, M. and H. Braun (1993). “A Direct Adaptive Method for Faster Backpropagation Learning:The RPROP Algorithm”, IEEE International Conference, pp.586-591.
41.Rumelhart, D. E., Hinton, G. E. and R. J. Williams (1986). “Learning Repres- entations by BackPropagation Errors”. Nature, Vol. 323, pp. 533-536
42.Staley, M. and p. Kim (1995). “Predicting The Canadian Spot Exchange Rate With Neural Networks”,Proceedings of the IEEE/IAFE Computational Intell- igence for Financial Engineering, pp.108-112.
43.Sfetsos, A. and C. Siriopoulos (2004). “Combinatorial Time Series Forecasting Based on Clustering Algorithms and Neural Nnetworks”, Neural Computing and Applications, Vol. 13, pp.56-64.
44.Shanno, D. F. (1970), “Conditioning of quasi-Neuwton methods for function minimization”, Mathematics Computation, Vol. 24, pp. 647-657.
45.Taylor, M. P. (1995). “The Economics of Exchange Rates”, Journal of Economic Literature, Vol. 33, pp. 13-47.
46.Wei, W. X. and Z. H. Jiang (1995). “Artificial Neural Network Forecasting Model for Exchange Rate and Empirical Analysis”, Forecasting, Vol. 2, pp.67–69.
47.Wei, H. (2004). “Forecasting Foreign Exchange Rates with Artificial Neural Networks: A Review”, International Journal of Information Technology & Decision Making, Vol. 3, No. 1, pp. 145–165
48.Weigend, A. S., Huberman, B. A. and D. E. Rumelhart (1992). “Predicting Sunspots and Exchange Rates with Connectionist Networks”, Nonlinear Modeling and Forecasting, pp. 395–432.
49.Wu, B. (1995). “Model-free Forecasting for Nonlinear Time Series (with Application to Exchange Rates) “, Computational Statistics and Data Analysis, Vol. 19, pp. 433–459.
50.Wu, I. F. and Y. J. Goo (2005). “A Neuro-Fuzzy Computing Technique for Modeling the Time Series of Short-Term NT$/US$ Exchange Rate “, The Journal of American Academy of Business, Vol. 7, Num 2, pp. 176-181.
51.Yao, J. T. and C. L. Tan (2000). “A Case Study on Using Neural Networks to Perform Technical Forecasting of Forex “, Neurocomputing, Vol. 34, pp. 79–98.
52.Zhang, G. and M. Y. Hu (1998). “Neural Network Forecasting of the British Pound /US Dollar Exchange Rate”, Journal of Management Science, Vol. 26, pp.495–506.
53.Zhang, G, Patuwo, B. E. and M. Y. Hu (1998). “Forecasting with Artificial Neural Networks: The State of the Art”, International Journal of Forecasting, Vol.14, pp.35–62.