跳到主要內容

臺灣博碩士論文加值系統

(18.97.9.168) 您好!臺灣時間:2024/12/13 10:31
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:王信忠
研究生(外文):Wang, Hsin-Chung
論文名稱:排列檢定法應用於空間資料之比較
論文名稱(外文):Permutation test on spatial comparison
指導教授:蔡紋琦蔡紋琦引用關係
學位類別:博士
校院名稱:國立政治大學
系所名稱:統計研究所
學門:數學及統計學門
學類:統計學類
論文種類:學術論文
論文出版年:2006
畢業學年度:94
語文別:英文
論文頁數:71
中文關鍵詞:費雪(Fisher)正確檢定Cramer-von Mises 統計量排列檢定可交換性空間分佈貝氏(Bayesian)方法檢定力比較空間自我迴歸(CAR)模型auto-Poisson模型auto-Gaussian模型群聚
外文關鍵詞:Fisher's exact testCramer-von Mises statisticpermutation testexchangeablespatial distributionsBayesian approachpower comparisonspatial conditionally autoregressive (CAR) modelauto-Poisson modelauto-Gaussian modelcluster
相關次數:
  • 被引用被引用:0
  • 點閱點閱:280
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本論文主要是探討在二維度空間上二母體分佈是否一致。我們利用排列
(permutation)檢定方法來做比較, 並藉由費雪(Fisher)正確檢定方法的想法而提出重標記 (relabel)排列檢定方法或稱為費雪排列檢定法。
我們透過可交換性的特質證明它是正確 (exact) 的並且比 Syrjala (1996)所建議的排列檢定方法有更高的檢定力 (power)。
本論文另提出二個空間模型: spatial multinomial-relative-log-normal 模型 與 spatial Poisson-relative-log-normal 模型
來配適一般在漁業中常有的右斜長尾次數分佈並包含很多0 的空間資料。另外一般物種可能因天性或自然環境因素像食物、溫度等影響而有群聚行為發生, 這二個模型亦可描述出空間資料的群聚現象以做適當的推論。
This thesis proposes the relabel (Fisher's) permutation test inspired by Fisher's exact test to compare between distributions of two (fishery) data sets locating on a two-dimensional lattice. We show that the permutation test given by Syrjala (1996} is not exact, but our relabel permutation test is exact and, additionally, more powerful.
This thesis also studies two spatial models: the spatial multinomial-relative-log-normal model and the spatial
Poisson-relative-log-normal model. Both models not only exhibit characteristics of skewness with a long right-hand tail and of high proportion of zero catches which usually appear in fishery data, but also have the ability to describe various types of aggregative behaviors.
1 INTRODUCTION 10
2 SYRJALA’s PERMUTATION TEST 13
2.1 Introduction 13
2.2 Test statistic 17
2.3 Switch permutation is exchangeable? 18
3 SPATIAL MODEL 20
3.1 Model description 21
3.1.1 Conditionally autoregressive model 22
3.1.2 Spatial multinomial-relative-log-normal model 23
3.1.3 Spatial Poisson-relative-log-normal model 24
3.2 Model justification 24
3.2.1 Examples of spatial multinomial-relative-log-normal distribution 26
3.2.2 Examples of spatial Poisson-relative-log-normal distribution 29
3.2.3 Highly skewed with a long right-hand tail 32
4 RELABEL PERMUTATION 35
4.1 Procedure of the relabel permutation 35
4.2 Illustration 36
4.3 Exchangeable 38
4.4 The relabel permutation test 42
5 NUMERICAL ANALYSIS 44
5.1 Simulation design 44
5.2 Size comparison 45
5.3 Power comparison 47
6 CONCLUSION AND DISCUSSIONS 55
6.1 Auto-models 55
6.2 Test statistic 57
6.3 Invariant property 58
6.4 Dimension reduction 59
REFERENCE 60
A APPENDIX 63
Aitchison, J. and Ho, C. H. (1989), “The multivariate Poisson-log normal distribution.”,Biometrika, 76, 643–653.

Anderson, T.W. (1962), “On the distribution of the Two-ample Cramer-von Mises Crite-rion.”, The Annals of mathematical Statistics, 33, 1148–1159.

Anderson, T.W. and Darling, D.A. (1952), “Asymptotic Theory of Certain ”Goodness of Fit” Criteria Based on Stochastic Processes.”, The Annals of Mathematical Statistics,23, 193–212.

Armistead, C.E. and Nichol, D.G. (1993), “1990 Bottom trawl survey of the eastern Bering Sea continental shelf.”, United States Department of Commerce,NOAA Technical Mem-orandum NMFS-AFSC-7.

Besag, J.E. (1974), “Spatial interaction and statistical analysis of lattice systems.”, Journal of the Royal Society B, 36, 192–225.

Brodeur, R.D., Sugisaki, H., and Hunt, G. L. (2002), “Increases in jellyfish biomas in the bering sea: implications for the ecosystem.”, Marine Ecology Process Series ., 233,89–103.

Conover, W.J. (1999), Practical Nonparametric Statistic. Third edition, Wiley, New York.

Cressie, N. (1993), Statistics for Spatial Data, Revised Edition., Wiley, New York.

Cui, H. (2002), “The average projection type weighted cramer-von mises statistics for testing some distribution.”, Science in China (ser. A), 45(5), 562–577.

Deluis, M., Raventos, J., Gonzalez-Hidalgo, J.C., Sanchez, J.R., and Cortina, J. (2000), “Spatial analysis of rainfall trends in the region of valencia (east spain).”, Int. J. Clima-tol., 20, 1451–1469.

Edgington, E.S. (1980), Randomization tests. Second edition., Marcel-Dekker, New York.

Fisz, M. (1960), “On a Result by M.Rosenblatt Concerning the Von Mises-Smirnov Test.”, The Annals of Mathematical Statistics, 31, 427–429.

Good, P. (2000), A practical guide to resampling methods for testing hypotheses. Second edition., Spring-Verlag, New York.

Hedger, R., McKenzie, E., Heath, M., Wright, P., Scott, B., Gallego, A., and Andrews, J. (2004), “Analysis of the spatial distributions of mature cod (gadus morhua) and haddock (melanogrammus aeglefinus) abundance in the north sea (1980-1999) using generalised additive models.”, Fisheries Research., 70, 17–25.

Leach, M.K. and Givnish, T.J. (1999), “Gradients in the composition, structure, and di-versity of remnant oak savannas in southern wisconsin.”, Ecological Monograph., 69,353–374.

Lehmann, E.L. (1986), Testing Statistical Hypotheses.Second Edition, Spring-Verlag, New York.

Pearson, K. (1900), “On the criterion that a given system of deviations from the probable in the case of a correlated system of variables is such that it can be reasonably supposed to have arisen from random sampling.”, Philosophy Magazine, 50, 157–172.

Swain, D.P. and Wade, E.J. (2003), “Spatial distribution of catch and effort in a fishery for snow crab (Chionoecetes opilio): tests of predictions of the ideal free distribution.”,Can J. Fish. Aquat. Sci., 60, 897–909.

Syrjala, S.E. (1996), “A statistical test for a difference between the spatial distribution of two populations”, Ecology, 77(1), 75–80.

Terceiro, M. (2003), “The statistical properties of recreational catch rate data for some fish stocks off the northeast U.S. coast.”, NMFS Scientific Publications Office.Fish Bull.,101, 653–672.

Wilks, S.S. (1938), “The large-sample distribution of the likelihood ratio for testing com-posite hypotheses.”, Annals of Mathematical Statistics, 9, 60–62.

Wilson, C.D, Hollowed, A.B., Shima, M., Walline, P., and Stienessen, S. (2003), “In-teractions between commercial fishing and walleye pollock.”, Alaska Fishery Research
Bulletin., 10, 61–77.62
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top